917 resultados para Geology|Hydrology


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new objective climatology of polar lows in the Nordic (Norwegian and Barents) seas has been derived from a database of diagnostics of objectively identified cyclones spanning the period January 2000 to April 2004. There are two distinct parts to this study: the development of the objective climatology and a characterization of the dynamical forcing of the polar lows identified. Polar lows are an intense subset of polar mesocyclones. Polar mesocyclones are distinguished from other cyclones in the database as those that occur in cold air outbreaks over the open ocean. The difference between the wet-bulb potential temperature at 700 hPa and the sea surface temperature (SST) is found to be an effective discriminator between the atmospheric conditions associated with polar lows and other cyclones in the Nordic seas. A verification study shows that the objective identification method is reliable in the Nordic seas region. After demonstrating success at identifying polar lows using the above method, the dynamical forcing of the polar lows in the Nordic seas is characterized. Diagnostics of the ratio of mid-level vertical motion attributable to quasi-geostrophic forcing from upper and lower levels (U/L ratio) are used to determine the prevalence of a recently proposed category of extratropical cyclogenesis, type C, for which latent heat release is crucial to development. Thirty-one percent of the objectively identified polar low events (36 from 115) exceeded the U/L ratio of 4.0, previously identified as a threshold for type C cyclones. There is a contrast between polar lows to the north and south of the Nordic seas. In the southern Norwegian Sea, the population of polar low events is dominated by type C cyclones. These possess strong convection and weak low-level baroclinicity. Over the Barents and northern Norwegian seas, the well-known cyclogenesis types A and B dominate. These possess stronger low-level baroclinicity and weaker convection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ventilation of the boundary layer has an important effect on local and regional air quality and is a prerequisite for long-range pollution transport. Once in the free troposphere, pollutants can alter the chemical composition of the troposphere and impact on the Earth's radiative forcing. Idealised baroclinic life cycles, LC1 and LC2, have been simulated in a three-dimensional dry hemispheric model in the presence of boundary-layer turbulent fluxes. A passive tracer is added to the simulations to represent pollution emitted at, or near, the surface. A simple conveyor-belt diagnostic is developed to objectively identify regions of the boundary layer that can be ventilated by either warm or cold conveyor belts. Transport of pollutants within and above the boundary layer is examined on synoptic scales. Three different physical mechanisms are found to interact with each other to ventilate pollutants out of the boundary layer. These mechanisms are turbulent mixing within the boundary layer, horizontal advection due to Ekman convergence and divergence within the boundary layer, and advection by the warm conveyor belt. The mass of tracer ventilated by the two life cycles is remarkably similar given the differences in frontal structure, suggesting that the large-scale baroclinicity is an effective constraint on ventilation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

North African dust is important for climate through its direct radiative effect on solar and terrestrial radiation and its role in the biogeochemical system. The Dust Outflow and Deposition to the Ocean project (DODO) aimed to characterize the physical and optical properties of airborne North African dust in two seasons and to use these observations to constrain model simulations, with the ultimate aim of being able to quantify the deposition of iron to the North Atlantic Ocean. The in situ properties of dust from airborne campaigns measured during February and August 2006, based at Dakar, Senegal, are presented here. Average values of the single scattering albedo (0.99, 0.98), mass specific extinction (0.85 m^2 g^-1 , 1.14 m^2 g^-1 ), asymmetry parameter (0.68, 0.68), and refractive index (1.53--0.0005i,1.53--0.0014i) for the accumulation mode were found to differ by varying degrees between the dry and wet season, respectively. It is hypothesized that these differences are due to different source regions and transport processes which also differ between the DODO campaigns. Elemental ratios of Ca/Al were found to differ between the dry and wet season (1.1 and 0.5, respectively). Differences in vertical profiles are found between seasons and between land and ocean locations and reflect the different dynamics of the seasons. Using measurements of the coarse mode size distribution and illustrative Mie calculations, the optical properties are found to be very sensitive to the presence and amount of coarse mode of mineral dust, and the importance of accurate measurements of the coarse mode of dust is highlighted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An operational dust forecasting model is developed by including the Met Office Hadley Centre climate model dust parameterization scheme, within a Met Office regional numerical weather prediction (NWP) model. The model includes parameterizations for dust uplift, dust transport, and dust deposition in six discrete size bins and provides diagnostics such as the aerosol optical depth. The results are compared against surface and satellite remote sensing measurements and against in situ measurements from the Facility for Atmospheric Airborne Measurements for a case study when a strong dust event was forecast. Comparisons are also performed against satellite and surface instrumentation for the entire month of August. The case study shows that this Saharan dust NWP model can provide very good guidance of dust events, as much as 42 h ahead. The analysis of monthly data suggests that the mean and variability in the dust model is also well represented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Various paleoclimate records have shown that the Asian monsoon was punctuated by numerous suborbital time-scale events, and these events were coeval with those that happened in the North Atlantic. This study investigates the Asian summer monsoon responses to the Atlantic Ocean forcing by applying an additional freshwater flux into the North Atlantic. The simulated results indicate that the cold North Atlantic and warm South Atlantic induced by the weakened Atlantic thermohaline circulation (THC) due to the freshwater flux lead to significantly suppressed Asian summer monsoon. The authors analyzed the detailed processes of the Atlantic Ocean forcing on the Asian summer monsoon, and found that the atmospheric teleconnection in the eastern and central North Pacific and the atmosphere-ocean interaction in the tropical North Pacific play the most crucial role. Enhanced precipitation in the subtropical North Pacific extends the effects of Atlantic Ocean forcing from the eastern Pacific into the western Pacific, and the atmosphere-ocean interaction in the tropical Pacific and Indian Ocean intensifies the circulation and precipitation anomalies in the Pacific and East Asia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigates the change of the El Niño–Southern Oscillation (ENSO)-South Asian summer monsoon interaction in response to a weakened Atlantic thermohaline circulation (THC) by applying an additional freshwater flux into the North Atlantic. The simulated results indicate that the weakened THC leads to intensified ENSO-South Asian summer monsoon relationship and enhanced South Asian summer monsoon interannual variability. Furthermore, it is suggested that this intensification of the ENSO-monsoon relationship is likely due to the enhanced ENSO variability induced by the weakened THC. This study indicates that the low frequency fluctuation of Atlantic SSTs might have an influence on South Asian summer monsoon interannual variability and the ENSO-monsoon interaction, and suggests a nonlocal mechanism for the observed decadal-multidecadal modulation of ENSO-monsoon relationship.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Radiation schemes in general circulation models currently make a number of simplifications when accounting for clouds, one of the most important being the removal of horizontal inhomogeneity. A new scheme is presented that attempts to account for the neglected inhomogeneity by using two regions of cloud in each vertical level of the model as opposed to one. One of these regions is used to represent the optically thinner cloud in the level, and the other represents the optically thicker cloud. So, along with the clear-sky region, the scheme has three regions in each model level and is referred to as “Tripleclouds.” In addition, the scheme has the capability to represent arbitrary vertical overlap between the three regions in pairs of adjacent levels. This scheme is implemented in the Edwards–Slingo radiation code and tested on 250 h of data from 12 different days. The data are derived from cloud retrievals using radar, lidar, and a microwave radiometer at Chilbolton, southern United Kingdom. When the data are grouped into periods equivalent in size to general circulation model grid boxes, the shortwave plane-parallel albedo bias is found to be 8%, while the corresponding bias is found to be less than 1% using Tripleclouds. Similar results are found for the longwave biases. Tripleclouds is then compared to a more conventional method of accounting for inhomogeneity that multiplies optical depths by a constant scaling factor, and Tripleclouds is seen to improve on this method both in terms of top-of-atmosphere radiative flux biases and internal heating rates.