206 resultados para Electricity Price Forecast
Resumo:
Replacement and upgrading of assets in the electricity network requires financial investment for the distribution and transmission utilities. The replacement and upgrading of network assets also represents an emissions impact due to the carbon embodied in the materials used to manufacture network assets. This paper uses investment and asset data for the GB system for 2015-2023 to assess the suitability of using a proxy with peak demand data and network investment data to calculate the carbon impacts of network investments. The proxies are calculated on a regional basis and applied to calculate the embodied carbon associated with current network assets by DNO region. The proxies are also applied to peak demand data across the 2015-2023 period to estimate the expected levels of embodied carbon that will be associated with network investment during this period. The suitability of these proxies in different contexts are then discussed, along with initial scenario analysis to calculate the impact of avoiding or deferring network investments through distributed generation projects. The proxies were found to be effective in estimating the total embodied carbon of electricity system investment in order to compare investment strategies in different regions of the GB network.
Resumo:
In this paper, we study jumps in commodity prices. Unlike assumed in existing models of commodity price dynamics, a simple analysis of the data reveals that the probability of tail events is not constant but depends on the time of the year, i.e. exhibits seasonality. We propose a stochastic volatility jump–diffusion model to capture this seasonal variation. Applying the Markov Chain Monte Carlo (MCMC) methodology, we estimate our model using 20 years of futures data from four different commodity markets. We find strong statistical evidence to suggest that our model with seasonal jump intensity outperforms models featuring a constant jump intensity. To demonstrate the practical relevance of our findings, we show that our model typically improves Value-at-Risk (VaR) forecasts.
Resumo:
Uncertainty of Arctic seasonal to interannual predictions arising from model errors and initial state uncertainty has been widely discussed in the literature, whereas the irreducible forecast uncertainty (IFU) arising from the chaoticity of the climate system has received less attention. However, IFU provides important insights into the mechanisms through which predictability is lost, and hence can inform prioritization of model development and observations deployment. Here, we characterize how internal oceanic and surface atmospheric heat fluxes contribute to IFU of Arctic sea ice and upper ocean heat content in an Earth system model by analyzing a set of idealized ensemble prediction experiments. We find that atmospheric and oceanic heat flux are often equally important for driving unpredictable Arctic-wide changes in sea ice and surface water temperatures, and hence contribute equally to IFU. Atmospheric surface heat flux tends to dominate Arctic-wide changes for lead times of up to a year, whereas oceanic heat flux tends to dominate regionally and on interannual time scales. There is in general a strong negative covariance between surface heat flux and ocean vertical heat flux at depth, and anomalies of lateral ocean heat transport are wind-driven, which suggests that the unpredictable oceanic heat flux variability is mainly forced by the atmosphere. These results are qualitatively robust across different initial states, but substantial variations in the amplitude of IFU exist. We conclude that both atmospheric variability and the initial state of the upper ocean are key ingredients for predictions of Arctic surface climate on seasonal to interannual time scales.
Enhanced long-range forecast skill in boreal winter following stratospheric strong vortex conditions
Resumo:
There has been a great deal of recent interest in producing weather forecasts on the 2–6 week sub-seasonal timescale, which bridges the gap between medium-range (0–10 day) and seasonal (3–6 month) forecasts. While much of this interest is focused on the potential applications of skilful forecasts on the sub-seasonal range, understanding the potential sources of sub-seasonal forecast skill is a challenging and interesting problem, particularly because of the likely state-dependence of this skill (Hudson et al 2011). One such potential source of state-dependent skill for the Northern Hemisphere in winter is the occurrence of stratospheric sudden warming (SSW) events (Sigmond et al 2013). Here we show, by analysing a set of sub-seasonal hindcasts, that there is enhanced predictability of surface circulation not only when the stratospheric vortex is anomalously weak following SSWs but also when the vortex is extremely strong. Sub-seasonal forecasts initialized during strong vortex events are able to successfully capture the associated surface temperature and circulation anomalies. This results in an enhancement of Northern annular mode forecast skill compared to forecasts initialized during the cases when the stratospheric state is close to climatology. We demonstrate that the enhancement of skill for forecasts initialized during periods of strong vortex conditions is comparable to that achieved for forecasts initialized during weak events. This result indicates that additional confidence can be placed in sub-seasonal forecasts when the stratospheric polar vortex is significantly disturbed from its normal state.
Resumo:
Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kVm-1 to 100 kVm-1 have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m-1 can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface)-MicroARES (Atmospheric Radiation and Electricity Sensor) instrumentation to Mars in 2016 for the first in situ measurements.
Resumo:
Using an international, multi-model suite of historical forecasts from the World Climate Research Programme (WCRP) Climate-system Historical Forecast Project (CHFP), we compare the seasonal prediction skill in boreal wintertime between models that resolve the stratosphere and its dynamics (“high-top”) and models that do not (“low-top”). We evaluate hindcasts that are initialized in November, and examine the model biases in the stratosphere and how they relate to boreal wintertime (Dec-Mar) seasonal forecast skill. We are unable to detect more skill in the high-top ensemble-mean than the low-top ensemble-mean in forecasting the wintertime North Atlantic Oscillation, but model performance varies widely. Increasing the ensemble size clearly increases the skill for a given model. We then examine two major processes involving stratosphere-troposphere interactions (the El Niño-Southern Oscillation/ENSO and the Quasi-biennial Oscillation/QBO) and how they relate to predictive skill on intra-seasonal to seasonal timescales, particularly over the North Atlantic and Eurasia regions. High-top models tend to have a more realistic stratospheric response to El Niño and the QBO compared to low-top models. Enhanced conditional wintertime skill over high-latitudes and the North Atlantic region during winters with El Niño conditions suggests a possible role for a stratospheric pathway.
Resumo:
Purpose – The purpose of this paper is to investigate the effect of the crisis on the pricing of asset quality attributes. This paper uses sales transaction data to examine whether flight from risk phenomena took place in the US office market during the financial crisis of 2007-2009. Design/methodology/approach – Hedonic regression procedures are used to test the hypothesis that the spread between the pricing of low-quality and high-quality characteristics increased during the crisis period compared to the pre-crisis period. Findings – The results of the hedonic regression models suggest that the price spread between Class A and other properties grew significantly during the downturn. Research limitations/implications – Our results are consistent with the hypothesis of an increased price spread following a market downturn between Class A and non-Class A offices. The evidence suggests that the relationships between the returns on Class A and non-Class A assets changed during the period of market stress or crisis. Practical implications – These findings have implications for real estate portfolio construction. If regime switches can be predicted and/or responded to rapidly, portfolios may be rebalanced. In crisis periods, portfolios might be reweighted towards Class A properties and in positive market periods, the reweighting would be towards non-Class A assets. Social implications – The global financial crisis has demonstrated that real estate markets play a crucial role in modern economies and that negative developments in these markets have the potential to spillover and create contagion for the larger economy, thereby affecting jobs, incomes and ultimately people’s livelihoods. Originality/value – This is one of the first studies that address the flight to quality phenomenon in commercial real estate markets during periods of financial crisis and market turmoil.
Resumo:
Recent research and policy studies on the low-carbon future highlight the importance of flexible electricity demand. This might be problematic particularly for residential electricity demand, which is related to simultaneous consumers’ practices in the household. This paper analyses issues of simultaneity in residential electricity demand in Spain. It makes use of the 2011 Spanish Time Use Survey data with comparisons from the previous Spanish Time Use Survey and the Harmonised European Time Use Surveys. Findings show that media activities are associated the highest levels of continuity and simultaneity, particularly in the early and late parts of the evening during weekdays.
Resumo:
Probabilistic hydro-meteorological forecasts have over the last decades been used more frequently to communicate forecastuncertainty. This uncertainty is twofold, as it constitutes both an added value and a challenge for the forecaster and the user of the forecasts. Many authors have demonstrated the added (economic) value of probabilistic over deterministic forecasts across the water sector (e.g. flood protection, hydroelectric power management and navigation). However, the richness of the information is also a source of challenges for operational uses, due partially to the difficulty to transform the probability of occurrence of an event into a binary decision. This paper presents the results of a risk-based decision-making game on the topic of flood protection mitigation, called “How much are you prepared to pay for a forecast?”. The game was played at several workshops in 2015, which were attended by operational forecasters and academics working in the field of hydrometeorology. The aim of this game was to better understand the role of probabilistic forecasts in decision-making processes and their perceived value by decision-makers. Based on the participants’ willingness-to-pay for a forecast, the results of the game show that the value (or the usefulness) of a forecast depends on several factors, including the way users perceive the quality of their forecasts and link it to the perception of their own performances as decision-makers.