454 resultados para Drew
Resumo:
A general approach for the synthesis of fused cyclic systems containing medium-sized rings (7-9) has been developed. The key steps involve a diastereoface-selective Diels-Alder reaction of the dienophiles 4a-d attached to a furanosugar with cyclopentadiene and ring opening (ROM)-ring closing metathesis (RCM) of the resulting norbornene derivatives 10a-d and 11a-d. Diels-Alder reaction of the dienophiles 4a-d with cyclopentadiene in the absence of a catalyst produced 10a-d as the major product arising through addition of the diene to the unhindered Si-face. The most interesting and new aspect of the Diels-Alder reaction of these dienophiles is the accessibility of the Re-face that was blocked by the alkenyl chains under Lewis acid catalysis producing the diastereoisomers 11a-d exclusively. The reversal of facial selectivity from an uncatalyzed reaction to a catalyzed one is unprecedented. The observed stereochemical dichotomy is attributed to rotation of the enone moiety along the or bond linking the sugar moiety during formation of the chelate 13. This makes the Re-face of the enone moiety in 4a-d unhindered. Diels-Alder reaction of the carbocyclic analogue 15 under Lewis acid catalysis produced a 1: 1 mixture of the adducts 16 and 17 confirming the participation of sugar ring oxygen in chelate formation. Finally ROM-RCM of 10a-d and 11a-d with Grubbs' catalyst afforded the cis-syn-cis and cis-anti-cis bicyclo-annulated sugars 21a-d and 23a-d, respectively, containing 7-9 membered rings.
Resumo:
Three mu(1.5)-dicyanamide bridged Mn(II) and Co(II) complexes having molecular formula [Mn(dca)(2)(H2O)(2)](n)center dot(hmt)(n) (1), [Co(dca)(2) (H2O)(2)](n)center dot(hmt)(n) (2) and [Co(dca)(2)(bpds)](n) (3) [dca = dicyanamide; hmt = hexamethylenetetramine; bpds = 4,4'-bipyridyl disulfide] have been synthesized and characterized by single crystal X-ray diffraction study, low temperature (300-2 K) magnetic measurement and thermal behavior. The X-ray diffraction analysis of 1 and 2 reveals that they are isostructural, comprising of 1D coordination polymers [M(dca)(2)(H2O)(2)](n) [M = Mn(II), Co(II) for 1 and 2. respectively] with uncoordinated hmt molecules located among the chains. The [M(dca)(2)(H2O)(2)](n) chains and the lattice hint molecules are connected through H-bonds resulting in a 3D supramolecular architecture. The octahedral N4O2 chromophore surrounding the metal ion forms via two trans located water oxygens and four nitrogens from four nitrile dca. Complex 3 is a 1D chain formed by two mu(1.5)-dca and one bridging bpds. The octahedral N-6 coordination sphere surrounding the cobalt ions comprises four nitrogens from dca and two from bpds. Low temperature magnetic study indicates small antiferromagnetic coupling for all the complexes. Best fit parameters for 1: J = -0.17 cm(-1), g = -2.03 with R = 6.1 x 10(-4), for 2, J = -0.50 cm(-1), and for 3, J = -0.95 cm(-1). (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A one-pot reaction of [Co(NO3)(2)center dot 6H(2)O and piperazine] with NH4SCN/NaSCN in water-methanol (1:1) solvent leads to two polymorphs of [Co(SCN)(4)(ppz-H)(2)] (ppz, piperazine) (I and II). X-ray crystal structure reveals both have same space group but the differences in the alignment of pendant SCN- leads to two polymorphs. In I, trifurcated N-H...S hydrogen bonding plays a prominent role in crystal packing leading to S...S interactions between SCN fragments but in II, no such trifurcation arises and thereby the crystal packing occurs through hydrogen bonding interactions only leading to a distinctly different network topology. TG/DSC and FT-IR study reveal they are enantiotropically related. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Three coordination complexes of Co(II)/Fe(II) with 4,4'-trimethylenedipyridine (bpp) and pseudohalides (SCN-, SeCN- and N-3(-)) have been synthesized. The complexes have been characterized by X-ray single crystal structure determination. They are isomorphous having 2D layers in which two independent wavy nets display parallel interwoven structures. Pseudohalide binds metal centers through N terminal and occupies the trans axial positions of the octahedral metal coordination environment. Pseudohalide remains pendant on both sides of the polymeric layer and help the stacking through hydrogen bonding. The conformation of bpp in the interpenetrated nets is observed to be dependent on the choice of pseudohalide. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Two polymeric azido bridged complexes [Ni2L2(N-3)(3)](n)(ClO4). (1) and [Cu(bpdS)(2)(N-3)],(ClO4),(H2O)(2.5n) (2) [L = Schiff base, obtained from the condensation of pyridine-2-aldehyde with N,N,2,2-tetramethyl-1,3-propanediamine; bpds = 4,4'-bipyridyl disulfide] have been synthesized and their crystal structures have been determined. Complex 1, C26H42ClN15Ni2O4, crystallizes in a triclinic system, space group P1 with a 8.089(13), b = 9.392(14), c = 12.267(18) angstrom, a = 107.28(l), b 95.95(1), gamma = 96.92(1)degrees and Z = 2; complex 2, C20H21ClCuN7O6.5S4, crystallizes in an orthorhombic system, space group Pnna with a = 10.839(14), b = 13.208(17), c = 19.75(2) angstrom and Z = 4. The crystal structure of I consists of 1D polymers of nickel(L) units, alternatively connected by single and double bridging mu-(1,3-N-3) ligand with isolated perchlorate anions. Variable temperature magnetic susceptibility data of the complex have been measured and the fitting,of magnetic data was carried out applying the Borris-Almenar formula for such types of alternating one-dimensional S = 1 systems, based on the Hamiltonian H = -J Sigma(S2iS2i-1 + aS(2i)S(2i+1)). The best-fit parameters obtained are J = -106.7 +/- 2 cm(-1); a = 0.82 +/- 0.02; g = 2.21 +/- 0.02. Complex 2 is a 2D network of 4,4 topology with the nodes occupied by the Cu-II ions, and the edges formed by single azide and double bpds connectors. The perchlorate anions are located between pairs of bpds. The magnetic data have been fitted considering the complex as a pseudo-one-dimensional system, with all copper((II)) atoms linked by [mu(1,3-azido) bridging ligands at axial positions (long Cu...N-3 distances) since the coupling through long bpds is almost nil. The best-fit parameters obtained with this model are J = -1.21 +/- 0.2 cm(-1), g 2.14 +/- 0.02. (c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005).
Resumo:
Three new carboxylato-bridged polymeric networks of Mn-II having molecular formula [Mn(ox)(dpyo)](n) (1), {[Mn-2(mal)(2)(bpee)(H2O)(2)]center dot 0.5(bpee)center dot 0.5(CH3OH)}n, (2) and {[Mn-3(btc)(2)(2,2'-bipy)(2)(H2O)(6)]center dot 4H(2)O}(n) (3) [dpyo, 4,4'-bipyridine N,N'dioxide; bpee, trans-1,2 bis(4-pyridyl) ethylene; 2,2'-bipy, 2,2'-bipyridine; ox = oxalate dianion; mal = malonate dianion; btc = 1,3,5-benzenetricarboxylate trianion] have been synthesized and characterized by single-crystal X-ray diffraction studies and low temperature magnetic measurements. Structure determination of complex I reveals a covalent bonded 2D network containing bischelating oxalate and bridging dpyo; complex 2 is a covalent,bonded 3D polymeric architecture, formed by bridging malonate and bpee ligands, resulting in an open framework with channels filled by uncoordinated disordered bpee and methanol molecules. Whereas complex 3, comprising btc anions bound to three metal centers, is a 1D chain which further extends its dimensionality to 3D via pi-pi and H-bonding interactions. Low temperature magnetic measurements reveal the existence of weak antiferromagnetic interaction in all these complexes. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006).
Resumo:
The reaction between [Mo(eta(3)-C3H5)(CO)(2)(NCMe)(2)Br] (1) and the ferrocenylamidobenzimidazole ligands FcCO(NH(2)benzim) (L1) and (FcCO)(2)(NHbenzim) (L2) led to a binuclear (2) and a trinuclear (3) Mo-Fe complex, respectively. The single-crystal X-ray structure of [Mo(eta(3)-C3H5)(CO)(2)(L2)Br] [L2 = {[(eta(5)-C5H5)Fe(eta(5)-C5H4CO)](2)(2-NH-benzimidazol-yl)}] shows that L2 is coordinated to the endo Mo(eta(3)-C3H5)(CO)(2) group in a kappa(2)-N,O-bidentate chelating fashion whereas the Mo-II centre displays a pseudooctahedral environment with Br occupying an equatorial position. Complex 2 was formulated as [MO(eta(3)-C3H5)(CO)(2)(L1)Br] on the basis of a combination of spectroscopic data, elemental analysis, conductivity and DFT calculations. L1 acts as a kappa(2)-N,N-bidentate ligand. In both L1 and L2, the HOMOs are mainly localised on iron while the C=O bond(s) contribute to the LUMO(s) and the next highest energy orbitals are Fe-allyl antibonding orbitals. When the ligands bind to Mo(eta(3)-C3H5)(CO)(2)Br, the greatest difference is that Mo becomes the strongest contributor to the HOMO. Electrochemical studies show that, in complex 2, no electronic interaction exists between the two ferrocenyl ligands and that the first electron has been removed from the Mo-II-centred HOMO. (c) Wiley-VCH Verlag GmbH & Co. KGaA.
Resumo:
Halo functionalisation of calix[4] tubes has been investigated through both derivatisation of individual calix[4]arenes and calix[4] tubes, using classical synthetic methods, to allow preparation of a series of novel derivatives. The solution and solid state properties are in accordance with the constituent calix[4] arenes adopting flattened cone arrangements which on complexation with potassium simplify to a regular cone. Electrospray and H-1 NMR studies, combined with molecular modelling have been used to ascertain the metal binding of this new series of cryptand like ionophores, demonstrating their retained selectivity for binding potassium over other Group 1 metals and the dependence on counter anion in the weak binding of silver.
Resumo:
Thallium cation complexation by calix[4]tubes has been investigated by a combination of (TI)-T-205, H-1 NMR and ES MS demonstrating the solution formation of a dithallium complex in which the cations are held in the calix[4]arene cavities. In addition, the structure of the complex has been determined in the solid state revealing the cations to be held exclusively by pi-cation interactions. Furthermore, this crystal structure has been used as the basis for molecular dynamics simulations to confirm that binding of the smaller K+ cation in the calix[4]tube cryptand like array occurs via the axial route featuring a g-cation intermediate.
Resumo:
Two concomitant polymorphic coordination complexes (dark blue - I and black - II) with the formula (Cu2C44H60N4O4) have been synthesized and characterized crystallographically. Magnetic measurements show the presence of a strong antiferromagnetic interaction and the 2J value corresponds extremely well to the theoretically calculated one, indicating the fact that it follows nicely the magneto-structural relationship. Immobilization of the copper(II) complex I on a 2D-hexagonal mesoporous silica showed good catalytic efficiency in the liquid phase partial oxidation of olefins in the presence of TBHP as an oxidant. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Trans-1, [HNEt3][Co-III(L-Se)(2)]center dot H2O and cis-1, [HNEt3][Co-III(L-Se)(2)]center dot 3H(2)O have been synthesized and characterized by single-crystal X-ray studies. The counter ion Et3NH+ plays a crucial role in the crystal packing leading to the formation of two distinctly different supramolecular assemblies in the two complexes. In trans-1, Co-bisphenolate units and triethylamine molecules are arranged in a linear fashion leading to a supramolecular columnar assembly along the crystallographic a-axis. In this assembly, triethylammonium ions are sandwiched between successive Co-bisphenolate units and act as gluing agents joining Co-bisphenolate units on either side through C-H center dot center dot center dot pi interactions. In sharp contrast to trans-1, Co-bisphenolate units and triethylammonium ions in cis-1 are arranged in a helical supramolecular assembly through similar C-H center dot center dot center dot pi interactions along the crystallographic b-axis. The Se center dot center dot center dot Se van der Waals interactions may be responsible for the predominant occurrence of the cis-isomer. The cyclic voltammetric studies showed quasi-reversible waves for the cobalt(III) -> cobalt(II) reductions with E-1/2 = 0.635 and 0.628 V vs. Ag/AgCl for cis-1 (at similar to 5 degrees C) and trans-1 (at similar to 25 degrees C), respectively. DFT calculations show that the trans-form is the thermodynamic product with higher stability than the cis-one, which is consistent with the variable temperature H-1 NMR studies
Resumo:
Two cobalt complexes, [Co(L-Se)(phen)]center dot CH2Cl2 (1) and [Co(L-Se)(N,N-Me(2)en)(CH3COO-)] (2) have been synthesized and characterized by elemental analyses, magnetic measurements, i.r. studies etc. Single crystal X- ray studies reveal that in complex (1) cobalt atom is in +2 oxidation state with trigonal bipyramidal geometry, while in complex (2) it is in +3 oxidation state and surrounded octahedrally. The asymmetric unit of complex (2) contains two crystallographically independent discrete molecules. Complex (1) was found to be paramagnetic with mu(eff) = 2.19 BM indicating a low spin cobalt(II) d(7) system, whereas complex (2) is found to be diamagnetic with cobalt(III) in low spin d(6) state. The kinetic studies on the reduction of (2) by ascorbic acid in 80% MeCN-20% H2O (v/v) at 25 degrees C reveal that the reaction proceeds through the rapid formation of inner-sphere adduct, probably by replacing the loosely coordinated AcO- group, followed by electron transfer in a slow step and is supported by a large Q (formation constant) value.
Resumo:
Six ruthenium(II) complexes have been prepared using the tridentate ligands 2,6-bis(benzimidazolyl) pyridine and bis(2-benzimidazolyl methyl) amine and having 2,2'-bipyridine, 2,2':6',2 ''-terpyridine, PPh3, MeCN and chloride as coligands. The crystal structures of three of the complexes trans-[Ru(bbpH(2))(PPh3)(2)(CH3CN)I(ClO4)(2) center dot 2H(2)O (2), [Ru(bbpH(2))(bpy)Cl]ClO4 (3) and [Ru(bbpH(2))(terpy)](ClO4)(2) (4) are also reported. The complexes show visible region absorption at 402-517 nm, indicating that it is possible to tune the visible region absorption by varying the ancillary ligand. Luminescence behavior of the complexes has been studied both at RT and at liquid nitrogen temperature (LNT). Luminescence of the complexes is found to be insensitive to the presence of dioxygen. Two of the complexes [Ru(bbpH(2))(bpy)Cl]ClO4 (3) and [Ru(bbpH(2))(terpy]ClO4)(2) (4) show RT emission in the NIR region, having lifetime, quantum yield and radiative constant values suitable for their application as NIR emitter in the solid state devices. The DFT calculations on these two complexes indicate that the metal t(2g) electrons are appreciably delocalized over the ligand backbone. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Three new ruthenium complexes of the formulae cis-[Ru(PPh3)(2)(BzTscbz)(2)] (1a), [Ru-2(PPh3)(2)(BzTscbz)(4)] (1b) and [Ru(PPh3)(2)(BzTscHbz)(2)](ClO4)(2) (2) [BzTscHbz = 4-(phenyl) thiosemicarbazone of benzaldehyde] have been synthesized and characterized by various physicochemical methods including X-ray structure determinations for 1a and 1b. The relative stabilities of the four-membered versus five-membered chelate rings formed by the deprotonated ligand BzTscbz are discussed on the basis of the experimental results and some semi-empirical as well as DFT calculations. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Sixteen neutral mixed ligand thiosemicarbazone complexes of ruthenium having general formula [Ru(PPh3)(2)L-2], where LH = 1-(arylidine)4-aryl thiosemicarbazones, have been synthesized and characterized. All complexes are diamagnetic and hence ruthenium is in the +2 oxidation state (low-spin d(6), S = 0). The complexes show several intense peaks in the visible region due to allowed metal to ligand charge transfer transitions. The structures of four of the complexes have been determined by single-crystal X-ray diffraction and they show that thiosemicarbazone ligands coordinate to the ruthenium center through the hydrazinic nitrogen and sulfur forming four-membered chelate rings with ruthenium in N2S2P2 coordination environment. In dichloromethane solution, the complexes show two quasi-reversible oxidative responses corresponding to loss of electron from HOMO and HOMO - 1. The E-0 values of the above two oxidations shows good linear relationship with Hammett substituents constant (sigma) as well as with the HOMO energy of the molecules calculated by the EHMO method. A DFT calculation on one representative complex suggests that there is appreciable contribution of the sulfur p-orbitals to the HOMO and HOMO - 1. Thus, assignment of the oxidation state of the metal in such complexes must be made with caution. (c) 2005 Elsevier B.V. All rights reserved.