206 resultados para Constrained Riemann problem


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a generic basic semi-algebraic subset S of the space of generalized functions, that is a set given by (not necessarily countably many) polynomial constraints. We derive necessary and sufficient conditions for an infinite sequence of generalized functions to be realizable on S, namely to be the moment sequence of a finite measure concentrated on S. Our approach combines the classical results about the moment problem on nuclear spaces with the techniques recently developed to treat the moment problem on basic semi-algebraic sets of Rd. In this way, we determine realizability conditions that can be more easily verified than the well-known Haviland type conditions. Our result completely characterizes the support of the realizing measure in terms of its moments. As concrete examples of semi-algebraic sets of generalized functions, we consider the set of all Radon measures and the set of all the measures having bounded Radon–Nikodym density w.r.t. the Lebesgue measure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incomplete understanding of three aspects of the climate system—equilibrium climate sensitivity, rate of ocean heat uptake and historical aerosol forcing—and the physical processes underlying them lead to uncertainties in our assessment of the global-mean temperature evolution in the twenty-first century1,2. Explorations of these uncertainties have so far relied on scaling approaches3,4, large ensembles of simplified climate models1,2, or small ensembles of complex coupled atmosphere–ocean general circulation models5,6 which under-represent uncertainties in key climate system properties derived from independent sources7–9. Here we present results from a multi-thousand-member perturbed-physics ensemble of transient coupled atmosphere–ocean general circulation model simulations. We find that model versions that reproduce observed surface temperature changes over the past 50 years show global-mean temperature increases of 1.4–3 K by 2050, relative to 1961–1990, under a mid-range forcing scenario. This range of warming is broadly consistent with the expert assessment provided by the Intergovernmental Panel on Climate Change Fourth Assessment Report10, but extends towards larger warming than observed in ensemblesof-opportunity5 typically used for climate impact assessments. From our simulations, we conclude that warming by the middle of the twenty-first century that is stronger than earlier estimates is consistent with recent observed temperature changes and a mid-range ‘no mitigation’ scenario for greenhouse-gas emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years several methodologies have been developed to combine and interpret ensembles of climate models with the aim of quantifying uncertainties in climate projections. Constrained climate model forecasts have been generated by combining various choices of metrics used to weight individual ensemble members, with diverse approaches to sampling the ensemble. The forecasts obtained are often significantly different, even when based on the same model output. Therefore, a climate model forecast classification system can serve two roles: to provide a way for forecast producers to self-classify their forecasts; and to provide information on the methodological assumptions underlying the forecast generation and its uncertainty when forecasts are used for impacts studies. In this review we propose a possible classification system based on choices of metrics and sampling strategies. We illustrate the impact of some of the possible choices in the uncertainty quantification of large scale projections of temperature and precipitation changes, and briefly discuss possible connections between climate forecast uncertainty quantification and decision making approaches in the climate change context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical regression methods take vectors as covariates and estimate the corresponding vectors of regression parameters. When addressing regression problems on covariates of more complex form such as multi-dimensional arrays (i.e. tensors), traditional computational models can be severely compromised by ultrahigh dimensionality as well as complex structure. By exploiting the special structure of tensor covariates, the tensor regression model provides a promising solution to reduce the model’s dimensionality to a manageable level, thus leading to efficient estimation. Most of the existing tensor-based methods independently estimate each individual regression problem based on tensor decomposition which allows the simultaneous projections of an input tensor to more than one direction along each mode. As a matter of fact, multi-dimensional data are collected under the same or very similar conditions, so that data share some common latent components but can also have their own independent parameters for each regression task. Therefore, it is beneficial to analyse regression parameters among all the regressions in a linked way. In this paper, we propose a tensor regression model based on Tucker Decomposition, which identifies not only the common components of parameters across all the regression tasks, but also independent factors contributing to each particular regression task simultaneously. Under this paradigm, the number of independent parameters along each mode is constrained by a sparsity-preserving regulariser. Linked multiway parameter analysis and sparsity modeling further reduce the total number of parameters, with lower memory cost than their tensor-based counterparts. The effectiveness of the new method is demonstrated on real data sets.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vast majority of putative solutions to the liar paradox face the infamous revenge problem. In recent work, however, Kevin Scharp has extensively developed an exciting and highly novel ‘inconsistency approach’ to the paradox that, he claims, does not face revenge. If Scharp is right, then this represents a significant step forward in our attempts to solve the liar paradox. However, in this paper, I raise a revenge problem that faces Scharp’s inconsistency approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let X be a locally compact Polish space. A random measure on X is a probability measure on the space of all (nonnegative) Radon measures on X. Denote by K(X) the cone of all Radon measures η on X which are of the form η =

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is something peculiar about aesthetic testimony. It seems more difficult to gain knowledge of aesthetic properties based solely upon testimony than it is in the case of other types of property. In this paper, I argue that we can provide an adequate explanation at the level of the semantics of aesthetic language, without defending any substantive thesis in epistemology or about aesthetic value/judgement. If aesthetic predicates are given a non-invariantist semantics, we can explain the supposed peculiar difficulty with aesthetic testimony.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We establish a general framework for a class of multidimensional stochastic processes over [0,1] under which with probability one, the signature (the collection of iterated path integrals in the sense of rough paths) is well-defined and determines the sample paths of the process up to reparametrization. In particular, by using the Malliavin calculus we show that our method applies to a class of Gaussian processes including fractional Brownian motion with Hurst parameter H>1/4, the Ornstein–Uhlenbeck process and the Brownian bridge.