599 resultados para 260502 Surfacewater Hydrology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Under anthropogenic climate change it is possible that the increased radiative forcing and associated changes in mean climate may affect the “dynamical equilibrium” of the climate system; leading to a change in the relative dominance of different modes of natural variability, the characteristics of their patterns or their behavior in the time domain. Here we use multi-century integrations of version three of the Hadley Centre atmosphere model coupled to a mixed layer ocean to examine potential changes in atmosphere-surface ocean modes of variability. After first evaluating the simulated modes of Northern Hemisphere winter surface temperature and geopotential height against observations, we examine their behavior under an idealized equilibrium doubling of atmospheric CO2. We find no significant changes in the order of dominance, the spatial patterns or the associated time series of the modes. Having established that the dynamic equilibrium is preserved in the model on doubling of CO2, we go on to examine the temperature pattern of mean climate change in terms of the modes of variability; the motivation being that the pattern of change might be explicable in terms of changes in the amount of time the system resides in a particular mode. In addition, if the two are closely related, we might be able to assess the relative credibility of different spatial patterns of climate change from different models (or model versions) by assessing their representation of variability. Significant shifts do appear to occur in the mean position of residence when examining a truncated set of the leading order modes. However, on examining the complete spectrum of modes, it is found that the mean climate change pattern is close to orthogonal to all of the modes and the large shifts are a manifestation of this orthogonality. The results suggest that care should be exercised in using a truncated set of variability EOFs to evaluate climate change signals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate model simulations of past and future climate invariably contain prescribed zonal mean stratospheric ozone. While the effects of zonal asymmetry in ozone have been examined in the Northern Hemisphere, much greater zonal asymmetry occurs in the Southern Hemisphere during the break up of the Antarctic ozone hole. We prescribe a realistic three-dimensional distribution of ozone in a high vertical resolution atmospheric model and compare results with a simulation containing zonal mean ozone. Prescribing the three dimensional ozone distribution results in a cooling of the stratosphere and upper troposphere comparable to that caused by ozone depletion itself. Our results suggest that changes in the zonal asymmetry of ozone have had important impacts on Southern Hemisphere climate, and will continue to do so in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The atmospheric circulation changes predicted by climate models are often described using sea level pressure, which generally shows a strengthening of the mid-latitude westerlies. Recent observed variability is dominated by the Northern Annular Mode (NAM) which is equivalent barotropic, so that wind variations of the same sign are seen at all levels. However, in model predictions of the response to anthropogenic forcing, there is a well-known enhanced warming at low levels over the northern polar cap in winter. This means that there is a strong baroclinic component to the response. The projection of the response onto a NAM-like zonal index varies with height. While at the surface most models project positively onto the zonal index, throughout most of the depth of the troposphere many of the models give negative projections. The response to anthropogenic forcing therefore has a distinctive baroclinic signature which is very different to the NAM

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Determining how El Niño and its impacts may change over the next 10 to 100 years remains a difficult scientific challenge. Ocean–atmosphere coupled general circulation models (CGCMs) are routinely used both to analyze El Niño mechanisms and teleconnections and to predict its evolution on a broad range of time scales, from seasonal to centennial. The ability to simulate El Niño as an emergent property of these models has largely improved over the last few years. Nevertheless, the diversity of model simulations of present-day El Niño indicates current limitations in our ability to model this climate phenomenon and to anticipate changes in its characteristics. A review of the several factors that contribute to this diversity, as well as potential means to improve the simulation of El Niño, is presented.