227 resultados para roof-top wind turbines


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates how changes in firm degree of internationalization are associated with the configuration of top management teams (TMT) based on a dataset of 41 large European firms in the banking and insurance industry, including detailed career profiles of the 264 executives that were serving on the TMTs of these firms at year-end 2002. Our findings suggest firms tend to match top executive profiles to their strategies. Entry into new foreign markets and new cultural zones was found to be associated with higher levels of international capacity at TMT level, whereas changes in international posture per se are not related to TMT international capacity. We discuss the interplay between firm strategies and internal structures in the context of firm internationalization and suggest directions for future research on TMTs

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind “noise,” which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical “downscaling” of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With a rapidly increasing fraction of electricity generation being sourced from wind, extreme wind power generation events such as prolonged periods of low (or high) generation and ramps in generation, are a growing concern for the efficient and secure operation of national power systems. As extreme events occur infrequently, long and reliable meteorological records are required to accurately estimate their characteristics. Recent publications have begun to investigate the use of global meteorological “reanalysis” data sets for power system applications, many of which focus on long-term average statistics such as monthly-mean generation. Here we demonstrate that reanalysis data can also be used to estimate the frequency of relatively short-lived extreme events (including ramping on sub-daily time scales). Verification against 328 surface observation stations across the United Kingdom suggests that near-surface wind variability over spatiotemporal scales greater than around 300 km and 6 h can be faithfully reproduced using reanalysis, with no need for costly dynamical downscaling. A case study is presented in which a state-of-the-art, 33 year reanalysis data set (MERRA, from NASA-GMAO), is used to construct an hourly time series of nationally-aggregated wind power generation in Great Britain (GB), assuming a fixed, modern distribution of wind farms. The resultant generation estimates are highly correlated with recorded data from National Grid in the recent period, both for instantaneous hourly values and for variability over time intervals greater than around 6 h. This 33 year time series is then used to quantify the frequency with which different extreme GB-wide wind power generation events occur, as well as their seasonal and inter-annual variability. Several novel insights into the nature of extreme wind power generation events are described, including (i) that the number of prolonged low or high generation events is well approximated by a Poission-like random process, and (ii) whilst in general there is large seasonal variability, the magnitude of the most extreme ramps is similar in both summer and winter. An up-to-date version of the GB case study data as well as the underlying model are freely available for download from our website: http://www.met.reading.ac.uk/~energymet/data/Cannon2014/.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use combinations of geomagnetic indices, based on both variation range and hourly means, to derive the solar wind flow speed, the interplanetary magnetic field strength at 1 AU and the total open solar flux between 1895 and the present. We analyze the effects of the regression procedure and geomagnetic indices used by adopting four analysis methods. These give a mean interplanetary magnetic field strength increase of 45.1 ± 4.5% between 1903 and 1956, associated with a 14.4 ± 0.7% rise in the solar wind speed. We use averaging timescales of 1 and 2 days to allow for the difference between the magnetic fluxes threading the coronal source surface and the heliocentric sphere at 1 AU. The largest uncertainties originate from the choice of regression procedure: the average of all eight estimates of the rise in open solar flux is 73.0 ± 5.0%, but the best procedure, giving the narrowest and most symmetric distribution of fit residuals, yields 87.3 ± 3.9%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are no direct observational methods for determining the total rate at which energy is extracted from the solar wind by the magnetosphere. In the absence of such a direct measurement, alternative means of estimating the energy available to drive the magnetospheric system have been developed using different ionospheric and magnetospheric indices as proxies for energy consumption and dissipation and thus the input. The so-called coupling functions are constructed from the parameters of the interplanetary medium, as either theoretical or empirical estimates of energy transfer, and the effectiveness of these coupling functions has been evaluated in terms of their correlation with the chosen index. A number of coupling functions have been studied in the past with various criteria governing event selection and timescale. The present paper contains an exhaustive survey of the correlation between geomagnetic activity and the near-Earth solar wind and two of the planetary indices at a wide variety of timescales. Various combinations of interplanetary parameters are evaluated with careful allowance for the effects of data gaps in the interplanetary data. We show that the theoretical coupling, P�, function first proposed by Vasyliunas et al. is superior at all timescales from 1-day to 1-year.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a process-based model for the dispersion of a passive scalar in the turbulent flow around the buildings of a city centre. The street network model is based on dividing the airspace of the streets and intersections into boxes, within which the turbulence renders the air well mixed. Mean flow advection through the network of street and intersection boxes then mediates further lateral dispersion. At the same time turbulent mixing in the vertical detrains scalar from the streets and intersections into the turbulent boundary layer above the buildings. When the geometry is regular, the street network model has an analytical solution that describes the variation in concentration in a near-field downwind of a single source, where the majority of scalar lies below roof level. The power of the analytical solution is that it demonstrates how the concentration is determined by only three parameters. The plume direction parameter describes the branching of scalar at the street intersections and hence determines the direction of the plume centreline, which may be very different from the above-roof wind direction. The transmission parameter determines the distance travelled before the majority of scalar is detrained into the atmospheric boundary layer above roof level and conventional atmospheric turbulence takes over as the dominant mixing process. Finally, a normalised source strength multiplies this pattern of concentration. This analytical solution converges to a Gaussian plume after a large number of intersections have been traversed, providing theoretical justification for previous studies that have developed empirical fits to Gaussian plume models. The analytical solution is shown to compare well with very high-resolution simulations and with wind tunnel experiments, although re-entrainment of scalar previously detrained into the boundary layer above roofs, which is not accounted for in the analytical solution, is shown to become an important process further downwind from the source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Windstorm Kyrill affected large parts of Europe in January 2007 and caused widespread havoc and loss of life. In this study the formation of a secondary cyclone, Kyill II, along the occluded front of the mature cyclone Kyrill and the occurrence of severe wind gusts as Kyrill II passed over Germany are investigated with the help of high-resolution regional climate model simulations. Kyrill underwent an explosive cyclogenesis south of Greenland as the storm crossed polewards of an intense upper-level jet stream. Later in its life cycle secondary cyclogenesis occurred just west of the British Isles. The formation of Kyrill II along the occluded front was associated (a) with frontolytic strain and (b) with strong diabatic heating in combination with a developing upper-level shortwave trough. Sensitivity studies with reduced latent heat release feature a similar development but a weaker secondary cyclone, revealing the importance of diabatic processes during the formation of Kyrill II. Kyrill II moved further towards Europe and its development was favored by a split jet structure aloft, which maintained the cyclone’s exceptionally deep core pressure (below 965 hPa) for at least 36 hours. The occurrence of hurricane force winds related to the strong cold front over North and Central Germany is analyzed using convection-permitting simulations. The lower troposphere exhibits conditional instability, a turbulent flow and evaporative cooling. Simulation at high spatio-temporal resolution suggests that the downward mixing of high momentum (the wind speed at 875 hPa widely exceeded 45 m s-1) accounts for widespread severe surface wind gusts, which is in agreement with observed widespread losses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the substorm growth phase, magnetic reconnection extracts ~10^15 J from the solar wind through magnetic reconnection at the magnetopause, which is then stored in the magnetotail lobes. Plasma sheet pressure then increases to balance magnetic flux density increases in the lobes. We examine plasma sheet pressure, density and temperature during substorm growth phases using nine years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG SML auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities and how this relates to the onset and size of the subsequent substorm expansion phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On 11 May 1999, the density of the solar wind dropped almost to zero. Space scientists are now giving their first reports of this rare opportunity to study the complex relationship between the Sun and Earth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar wind/magnetosheath plasma in the magnetosphere can be identified using a component that has a higher charge state, lower density and, at least soon after their entry into the magnetosphere, lower energy than plasma from a terrestrial source. We survey here observations taken over 3 years of He2+ ions made by the Magnetospheric Ion Composition Sensor (MICS) of the Charge and Mass Mgnetospheric Ion Composition Experiment (CAMMICE) instrument aboard POLAR. The occurrence probability of these solar wind ions is then plotted as a function of Magnetic Local Time (MLT) and invariant latitude (3) for various energy ranges. For all energies observed by MICS (1.8–21.4 keV) and all solar wind conditions, the occurrence probabilities peaked around the cusp region and along the dawn flank. The solar wind conditions were filtered to see if this dawnward asymmetry is controlled by the Svalgaard-Mansurov effect (and so depends on the BY component of the interplanetary magnetic field, IMF) or by Fermi acceleration of He2+ at the bow shock (and so depends on the IMF ratio BX/BY ). It is shown that the asymmetry remained persistently on the dawn flank, suggesting it was not due to effects associated with direct entry into the magnetosphere. This asymmetry, with enhanced fluxes on the dawn flank, persisted for lower energy ions (below a “cross-over” energy of about 23 keV) but reversed sense to give higher fluxes on the dusk flank at higher energies. This can be explained by the competing effects of gradient/curvature drifts and the convection electric field on ions that are convecting sunward on re-closed field lines. The lower-energy He2+ ions E × B drift dawnwards as they move earthward, whereas the higher energy ions curvature/gradient drift towards dusk. The convection electric field in the tail is weaker for northward IMF. Ions then need less energy to drift to the dusk flank, so that the cross-over energy, at which the asymmetry changes sense, is reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we report coordinated multispacecraft and ground-based observations of a double substorm onset close to Scandinavia on November 17, 1996. The Wind and the Geotail spacecraft, which were located in the solar wind and the subsolar magnetosheath, respectively, recorded two periods of southward directed interplanetary magnetic field (IMF). These periods were separated by a short northward IMF excursion associated with a solar wind pressure pulse, which compressed the magnetosphere to such a degree that Geotail for a short period was located outside the bow shock. The first period of southward IMF initiated a substorm growth. phase, which was clearly detected by an array of ground-based instrumentation and by Interball in the northern tail lobe. A first substorm onset occurred in close relation to the solar wind pressure pulse impinging on the magnetopause and almost simultaneously with the northward turning of the IMF. However, this substorm did not fully develop. In clear association with the expansion of the magnetosphere at the end of the pressure pulse, the auroral expansion was stopped, and the northern sky cleared. We will present evidence that the change in the solar wind dynamic pressure actively quenched the energy available for any further substorm expansion. Directly after this period, the magnetometer network detected signatures of a renewed substorm growth phase, which was initiated by the second southward turning of the IMF and which finally lead to a second, and this time complete, substorm intensification. We have used our multipoint observations in order to understand the solar wind control of the substorm onset and substorm quenching. The relative timings between the observations on the various satellites and on the ground were used to infer a possible causal relationship between the solar wind pressure variations and consequent substorm development. Furthermore, using a relatively simple algorithm to model the tail lobe field and the total tail flux, we show that there indeed exists a close relationship between the relaxation of a solar wind pressure pulse, the reduction of the tail lobe field, and the quenching of the initial substorm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ground-based observations of dayside auroral forms and magnetic perturbations in the arctic sectors of Svalbard and Greenland, in combination with the high-resolution measurements of ionospheric ion drift and temperature by the EISCAT radar, are used to study temporal/spatial structures of cusp-type auroral forms in relation to convection. Large-scale patterns of equivalent convection in the dayside polar ionosphere are derived from the magnetic observations in Greenland and Svalbard. This information is used to estimate the ionospheric convection pattern in the vicinity of the cusp/cleft aurora. The reported observations, covering the period 0700-1130 UT, on January 11, 1993, are separated into four intervals according to the observed characteristics of the aurora and ionospheric convection. The morphology and intensity of the aurora are very different in quiet and disturbed intervals. A latitudinally narrow zone of intense and dynamical 630.0 nm emission equatorward of 75 degrees MLAT, was observed during periods of enhanced antisunward convection in the cusp region. This (type 1 cusp aurora) is considered to be the signature of plasma entry via magnetopause reconnection at low magnetopause latitudes, i.e. the low-latitude boundary layer (LLB I,). Another zone of weak 630.0 nm emission (type 2 cusp aurora) was observed to extend up to high latitudes (similar to 79 degrees MLAT) during relatively quiet magnetic conditions, when indications of reverse (sunward) convection was observed in the dayside polar cap. This is postulated to be a signature of merging between a northward directed IMF (B-z > 0) and the geomagnetic field poleward of the cusp. The coexistence of type 1 and 2 auroras was observed under intermediate circumstances. The optical observations from Svalbard and Greenland were also used to determine the temporal and spatial evolution of type 1 auroral forms, i.e. poleward-moving auroral events occurring in the vicinity of a rotational convection reversal in the early post-noon sector. Each event appeared as a local brightening at the equatorward boundary of the pre-existing type 1 cusp aurora, followed by poleward and eastward expansions of luminosity. The auroral events were associated with poleward-moving surges of enhanced ionospheric convection and F-layer ion temperature as observed by the EISCAT radar in Tromso. The EISCAT ion flow data in combination with the auroral observations show strong evidence for plasma flow across the open/closed field line boundary.

Relevância:

20.00% 20.00%

Publicador: