214 resultados para flood extent mapping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change due to anthropogenic greenhouse gas emissions is expected to increase the frequency and intensity of precipitation events, which is likely to affect the probability of flooding into the future. In this paper we use river flow simulations from nine global hydrology and land surface models to explore uncertainties in the potential impacts of climate change on flood hazard at global scale. As an indicator of flood hazard we looked at changes in the 30-y return level of 5-d average peak flows under representative concentration pathway RCP8.5 at the end of this century. Not everywhere does climate change result in an increase in flood hazard: decreases in the magnitude and frequency of the 30-y return level of river flow occur at roughly one-third (20-45%) of the global land grid points, particularly in areas where the hydro-graph is dominated by the snowmelt flood peak in spring. In most model experiments, however, an increase in flooding frequency was found in more than half of the grid points. The current 30-y flood peak is projected to occur in more than 1 in 5 y across 5-30% of land grid points. The large-scale patterns of change are remarkably consistent among impact models and even the driving climate models, but at local scale and in individual river basins there can be disagreement even on the sign of change, indicating large modeling uncertainty which needs to be taken into account in local adaptation studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This winter (2013/14) coastal storms and an unprecedented amount of rainfall led to significant and widespread flooding across the southern UK. Despite much criticism and blame surrounding the flood events, the Flood Forecasting Centre, a recent development in national-level flood forecasting capabilities for the government and emergency response communities, has received considerable praise. Here we consider how scientific developments and organisational change have led to improvements in the forecasting and flood preparedness seen in this winter's flooding. Although such improvements are admirable, there are many technical and communication challenges that remain for probabilistic flood forecasts to achieve their full potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report high-resolution observations of the southward-IMF cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter) Svalbard radar (ESR), and compare them with observations of dayside auroral luminosity, as seen at a wavelength of 630 nm by a meridian scanning photometer at Ny Alesund, and of plasma flows, as seen by the CUTLASS (co-operative UK twin location auroral sounding system) Finland HF radar. The optical data reveal a series of poleward-moving transient red-line (630 nm) enhancements, events that have been associated with bursts in the rate of magnetopause reconnection generating new open flux. The combined observations at this time have strong similarities to predictions of the effects of soft electron precipitation modulated by pulsed reconnection, as made by Davis and Lockwood (1996); however, the effects of rapid zonal flow in the ionosphere, caused by the magnetic curvature force on the newly opened field lines, are found to be a significant additional factor. In particular, it is shown how enhanced plasma loss rates induced by the rapid convection can explain two outstanding anomalies of the 630 nm transients, namely how minima in luminosity form between the poleward-moving events and how events can re-brighten as they move poleward. The observations show how cusp/cleft aurora and transient poleward-moving auroral forms appear in the ESR data and the conditions which cause enhanced 630 nm emission in the transients: they are an important first step in enabling the ESR to identify these features away from the winter solstice when supporting auroral observations are not available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catastrophe risk models used by the insurance industry are likely subject to significant uncertainty, but due to their proprietary nature and strict licensing conditions they are not available for experimentation. In addition, even if such experiments were conducted, these would not be repeatable by other researchers because commercial confidentiality issues prevent the details of proprietary catastrophe model structures from being described in public domain documents. However, such experimentation is urgently required to improve decision making in both insurance and reinsurance markets. In this paper we therefore construct our own catastrophe risk model for flooding in Dublin, Ireland, in order to assess the impact of typical precipitation data uncertainty on loss predictions. As we consider only a city region rather than a whole territory and have access to detailed data and computing resources typically unavailable to industry modellers, our model is significantly more detailed than most commercial products. The model consists of four components, a stochastic rainfall module, a hydrological and hydraulic flood hazard module, a vulnerability module, and a financial loss module. Using these we undertake a series of simulations to test the impact of driving the stochastic event generator with four different rainfall data sets: ground gauge data, gauge-corrected rainfall radar, meteorological reanalysis data (European Centre for Medium-Range Weather Forecasts Reanalysis-Interim; ERA-Interim) and a satellite rainfall product (The Climate Prediction Center morphing method; CMORPH). Catastrophe models are unusual because they use the upper three components of the modelling chain to generate a large synthetic database of unobserved and severe loss-driving events for which estimated losses are calculated. We find the loss estimates to be more sensitive to uncertainties propagated from the driving precipitation data sets than to other uncertainties in the hazard and vulnerability modules, suggesting that the range of uncertainty within catastrophe model structures may be greater than commonly believed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The open magnetosphere model of cusp ion injection, acceleration and precipitation is used to predict the dispersion characteristics for fully pulsed magnetic reconnection at a low-latitude magnetopause X-line. The resulting steps, as would be seen by a satellite moving meridionally and normal to the ionospheric projection of the X-line, are compared with those seen by satellites moving longitudinally, along the open/closed boundary. It is shown that two observed cases can be explained by similar magnetosheath and reconnection characteristics, and that the major differences between them are well explained by the different satellite paths through the events. Both cases were observed in association with poleward-moving transient events seen by ground-based radar, as also predicted by the theory. The results show that the reconnection is pulsed but strongly imply it cannot also be spatially patchy, in the sense of isolated X-lines which independently are intermittently active. Furthermore they show that the reconnection pulses responsible for the poleward-moving events and the cusp ion steps, must cover at least 3 h of magnetic local time, although propagation of the active reconnection region may mean that it does not extend this far at any one instant of time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 1999, the National Commission for the Knowledge and Use of the Biodiversity (CONABIO) in Mexico has been developing and managing the “Operational program for the detection of hot-spots using remote sensing techniques”. This program uses images from the MODerate resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites and from the Advanced Very High Resolution Radiometer of the National Oceanic and Atmospheric Administration (NOAA-AVHRR), which are operationally received through the Direct Readout station (DR) at CONABIO. This allows the near-real time monitoring of fire events in Mexico and Central America. In addition to the detection of active fires, the location of hot spots are classified with respect to vegetation types, accessibility, and risk to Nature Protection Areas (NPA). Besides the fast detection of fires, further analysis is necessary due to the considerable effects of forest fires on biodiversity and human life. This fire impact assessment is crucial to support the needs of resource managers and policy makers for adequate fire recovery and restoration actions. CONABIO attempts to meet these requirements, providing post-fire assessment products as part of the management system in particular for satellite-based burnt area mapping. This paper provides an overview of the main components of the operational system and will present an outlook to future activities and system improvements, especially the development of a burnt area product. A special focus will also be placed on the fire occurrence within NPAs of Mexico

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Satellite-based (e.g., Synthetic Aperture Radar [SAR]) water level observations (WLOs) of the floodplain can be sequentially assimilated into a hydrodynamic model to decrease forecast uncertainty. This has the potential to keep the forecast on track, so providing an Earth Observation (EO) based flood forecast system. However, the operational applicability of such a system for floods developed over river networks requires further testing. One of the promising techniques for assimilation in this field is the family of ensemble Kalman (EnKF) filters. These filters use a limited-size ensemble representation of the forecast error covariance matrix. This representation tends to develop spurious correlations as the forecast-assimilation cycle proceeds, which is a further complication for dealing with floods in either urban areas or river junctions in rural environments. Here we evaluate the assimilation of WLOs obtained from a sequence of real SAR overpasses (the X-band COSMO-Skymed constellation) in a case study. We show that a direct application of a global Ensemble Transform Kalman Filter (ETKF) suffers from filter divergence caused by spurious correlations. However, a spatially-based filter localization provides a substantial moderation in the development of the forecast error covariance matrix, directly improving the forecast and also making it possible to further benefit from a simultaneous online inflow error estimation and correction. Additionally, we propose and evaluate a novel along-network metric for filter localization, which is physically-meaningful for the flood over a network problem. Using this metric, we further evaluate the simultaneous estimation of channel friction and spatially-variable channel bathymetry, for which the filter seems able to converge simultaneously to sensible values. Results also indicate that friction is a second order effect in flood inundation models applied to gradually varied flow in large rivers. The study is not conclusive regarding whether in an operational situation the simultaneous estimation of friction and bathymetry helps the current forecast. Overall, the results indicate the feasibility of stand-alone EO-based operational flood forecasting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is growing recognition that hybrid organizations can play a critical role in tackling intractable global sustainable development challenges. At the same time, acute social, environmental, and economic challenges are opening up “opportunity” spaces for hybrids. Different institutional contexts are also leading to variable hybrid forms linked to the focus of their mission and their profit-oriented status. This article presents a process for identifying, mapping, and building impact indicators based on a study of 20 hybrid organizations in Sub-Saharan Africa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective disaster risk management relies on science-based solutions to close the gap between prevention and preparedness measures. The consultation on the United Nations post-2015 framework for disaster risk reduction highlights the need for cross-border early warning systems to strengthen the preparedness phases of disaster risk management, in order to save lives and property and reduce the overall impact of severe events. Continental and global scale flood forecasting systems provide vital early flood warning information to national and international civil protection authorities, who can use this information to make decisions on how to prepare for upcoming floods. Here the potential monetary benefits of early flood warnings are estimated based on the forecasts of the continental-scale European Flood Awareness System (EFAS) using existing flood damage cost information and calculations of potential avoided flood damages. The benefits are of the order of 400 Euro for every 1 Euro invested. A sensitivity analysis is performed in order to test the uncertainty in the method and develop an envelope of potential monetary benefits of EFAS warnings. The results provide clear evidence that there is likely a substantial monetary benefit in this cross-border continental-scale flood early warning system. This supports the wider drive to implement early warning systems at the continental or global scale to improve our resilience to natural hazards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The incorporation of numerical weather predictions (NWP) into a flood warning system can increase forecast lead times from a few hours to a few days. A single NWP forecast from a single forecast centre, however, is insufficient as it involves considerable non-predictable uncertainties and can lead to a high number of false or missed warnings. Weather forecasts using multiple NWPs from various weather centres implemented on catchment hydrology can provide significantly improved early flood warning. The availability of global ensemble weather prediction systems through the ‘THORPEX Interactive Grand Global Ensemble’ (TIGGE) offers a new opportunity for the development of state-of-the-art early flood forecasting systems. This paper presents a case study using the TIGGE database for flood warning on a meso-scale catchment (4062 km2) located in the Midlands region of England. For the first time, a research attempt is made to set up a coupled atmospheric-hydrologic-hydraulic cascade system driven by the TIGGE ensemble forecasts. A probabilistic discharge and flood inundation forecast is provided as the end product to study the potential benefits of using the TIGGE database. The study shows that precipitation input uncertainties dominate and propagate through the cascade chain. The current NWPs fall short of representing the spatial precipitation variability on such a comparatively small catchment, which indicates need to improve NWPs resolution and/or disaggregating techniques to narrow down the spatial gap between meteorology and hydrology. The spread of discharge forecasts varies from centre to centre, but it is generally large and implies a significant level of uncertainties. Nevertheless, the results show the TIGGE database is a promising tool to forecast flood inundation, comparable with that driven by raingauge observation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the challenge of representing structural differences in river channel cross-section geometry for regional to global scale river hydraulic models and the effect this can have on simulations of wave dynamics. Classically, channel geometry is defined using data, yet at larger scales the necessary information and model structures do not exist to take this approach. We therefore propose a fundamentally different approach where the structural uncertainty in channel geometry is represented using a simple parameterization, which could then be estimated through calibration or data assimilation. This paper first outlines the development of a computationally efficient numerical scheme to represent generalised channel shapes using a single parameter, which is then validated using a simple straight channel test case and shown to predict wetted perimeter to within 2% for the channels tested. An application to the River Severn, UK is also presented, along with an analysis of model sensitivity to channel shape, depth and friction. The channel shape parameter was shown to improve model simulations of river level, particularly for more physically plausible channel roughness and depth parameter ranges. Calibrating channel Manning’s coefficient in a rectangular channel provided similar water level simulation accuracy in terms of Nash-Sutcliffe efficiency to a model where friction and shape or depth were calibrated. However, the calibrated Manning coefficient in the rectangular channel model was ~2/3 greater than the likely physically realistic value for this reach and this erroneously slowed wave propagation times through the reach by several hours. Therefore, for large scale models applied in data sparse areas, calibrating channel depth and/or shape may be preferable to assuming a rectangular geometry and calibrating friction alone.