197 resultados para convective upwinding scheme


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Model intercomparisons have identified important deficits in the representation of the stable boundary layer by turbulence parametrizations used in current weather and climate models. However, detrimental impacts of more realistic schemes on the large-scale flow have hindered progress in this area. Here we implement a total turbulent energy scheme into the climate model ECHAM6. The total turbulent energy scheme considers the effects of Earth’s rotation and static stability on the turbulence length scale. In contrast to the previously used turbulence scheme, the TTE scheme also implicitly represents entrainment flux in a dry convective boundary layer. Reducing the previously exaggerated surface drag in stable boundary layers indeed causes an increase in southern hemispheric zonal winds and large-scale pressure gradients beyond observed values. These biases can be largely removed by increasing the parametrized orographic drag. Reducing the neutral limit turbulent Prandtl number warms and moistens low-latitude boundary layers and acts to reduce longstanding radiation biases in the stratocumulus regions, the Southern Ocean and the equatorial cold tongue that are common to many climate models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weeds tend to aggregate in patches within fields and there is evidence that this is partly owing to variation in soil properties. Because the processes driving soil heterogeneity operate at different scales, the strength of the relationships between soil properties and weed density would also be expected to be scale-dependent. Quantifying these effects of scale on weed patch dynamics is essential to guide the design of discrete sampling protocols for mapping weed distribution. We have developed a general method that uses novel within-field nested sampling and residual maximum likelihood (REML) estimation to explore scale-dependent relationships between weeds and soil properties. We have validated the method using a case study of Alopecurus myosuroides in winter wheat. Using REML, we partitioned the variance and covariance into scale-specific components and estimated the correlations between the weed counts and soil properties at each scale. We used variograms to quantify the spatial structure in the data and to map variables by kriging. Our methodology successfully captured the effect of scale on a number of edaphic drivers of weed patchiness. The overall Pearson correlations between A. myosuroides and soil organic matter and clay content were weak and masked the stronger correlations at >50 m. Knowing how the variance was partitioned across the spatial scales we optimized the sampling design to focus sampling effort at those scales that contributed most to the total variance. The methods have the potential to guide patch spraying of weeds by identifying areas of the field that are vulnerable to weed establishment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are some long-established biases in atmospheric models that originate from the representation of tropical convection. Previously, it has been difficult to separate cause and effect because errors are often the result of a number of interacting biases. Recently, researchers have gained the ability to run multiyear global climate model simulations with grid spacings small enough to switch the convective parameterization off, which permits the convection to develop explicitly. There are clear improvements to the initiation of convective storms and the diurnal cycle of rainfall in the convection-permitting simulations, which enables a new process-study approach to model bias identification. In this study, multiyear global atmosphere-only climate simulations with and without convective parameterization are undertaken with the Met Office Unified Model and are analyzed over the Maritime Continent region, where convergence from sea-breeze circulations is key for convection initiation. The analysis shows that, although the simulation with parameterized convection is able to reproduce the key rain-forming sea-breeze circulation, the parameterization is not able to respond realistically to the circulation. A feedback of errors also occurs: the convective parameterization causes rain to fall in the early morning, which cools and wets the boundary layer, reducing the land–sea temperature contrast and weakening the sea breeze. This is, however, an effect of the convective bias, rather than a cause of it. Improvements to how and when convection schemes trigger convection will improve both the timing and location of tropical rainfall and representation of sea-breeze circulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generalization of Arakawa and Schubert's convective quasi-equilibrium principle is presented for a closure formulation of mass-flux convection parameterization. The original principle is based on the budget of the cloud work function. This principle is generalized by considering the budget for a vertical integral of an arbitrary convection-related quantity. The closure formulation includes Arakawa and Schubert's quasi-equilibrium, as well as both CAPE and moisture closures as special cases. The formulation also includes new possibilities for considering vertical integrals that are dependent on convective-scale variables, such as the moisture within convection. The generalized convective quasi-equilibrium is defined by a balance between large-scale forcing and convective response for a given vertically-integrated quantity. The latter takes the form of a convolution of a kernel matrix and a mass-flux spectrum, as in the original convective quasi-equilibrium. The kernel reduces to a scalar when either a bulk formulation is adopted, or only large-scale variables are considered within the vertical integral. Various physical implications of the generalized closure are discussed. These include the possibility that precipitation might be considered as a potentially-significant contribution to the large-scale forcing. Two dicta are proposed as guiding physical principles for the specifying a suitable vertically-integrated quantity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is an empirical-based study of the European Union’s Emissions Trading Scheme (EU ETS) and its implications in terms of corporate environmental and financial performance. The novelty of this study includes the extended scope of the data coverage, as most previous studies have examined only the power sector. The use of verified emissions data of ETS-regulated firms as the environmental compliance measure and as the potential differentiating criteria that concern the valuation of EU ETS-exposed firms in the stock market is also an original aspect of this study. The study begins in Chapter 2 by introducing the background information on the emission trading system (ETS), which focuses on (i) the adoption of ETS as an environmental management instrument and (ii) the adoption of ETS by the European Union as one of its central climate policies. Chapter 3 surveys four databases that provide carbon emissions data in order to determine the most suitable source of the data to be used in the later empirical chapters. The first empirical chapter, which is also Chapter 4 of this thesis, investigates the determinants of the emissions compliance performance of the EU ETS-exposed firms through constructing the best possible performance ratio from verified emissions data and self-configuring models for a panel regression analysis. Chapter 5 examines the impacts on the EU ETS-exposed firms in terms of their equity valuation with customised portfolios and multi-factor market models. The research design takes into account the emissions allowance (EUA) price as an additional factor, as it has the most direct association with the EU ETS to control for the exposure. The final empirical Chapter 6 takes the investigation one step further, by specifically testing the degree of ETS exposure facing different sectors with sector-based portfolios and an extended multi-factor market model. The findings from the emissions performance ratio analysis show that the business model of firms significantly influences emissions compliance, as the capital intensity has a positive association with the increasing emissions-to-emissions cap ratio. Furthermore, different sectors show different degrees of sensitivity towards the determining factors. The production factor influences the performance ratio of the Utilities sector, but not the Energy or Materials sectors. The results show that the capital intensity has a more profound influence on the utilities sector than on the materials sector. With regard to the financial performance impact, ETS-exposed firms as aggregate portfolios experienced a substantial underperformance during the 2001–2004 period, but not in the operating period of 2005–2011. The results of the sector-based portfolios show again the differentiating effect of the EU ETS on sectors, as one sector is priced indifferently against its benchmark, three sectors see a constant underperformance, and three sectors have altered outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses an important issue related to the implementation and interpretation of the analysis scheme in the ensemble Kalman filter . I t i s shown that the obser vations must be treated as random variables at the analysis steps. That is, one should add random perturbations with the correct statistics to the obser vations and generate an ensemble of obser vations that then is used in updating the ensemble of model states. T raditionally , this has not been done in previous applications of the ensemble Kalman filter and, as will be shown, this has resulted in an updated ensemble with a variance that is too low . This simple modification of the analysis scheme results in a completely consistent approach if the covariance of the ensemble of model states is interpreted as the prediction error covariance, and there are no further requirements on the ensemble Kalman filter method, except for the use of an ensemble of sufficient size. Thus, there is a unique correspondence between the error statistics from the ensemble Kalman filter and the standard Kalman filter approach

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines convection-permitting numerical simulations of four cases of terrain-locked quasi-stationary convective bands over the UK. For each case, a 2.2-km grid-length 12-member ensemble and 1.5-km grid-length deterministic forecast are analyzed, each with two different initialization times. Object-based verification is applied to determine whether the simulations capture the structure, location, timing, intensity and duration of the observed precipitation. These verification diagnostics reveal that the forecast skill varies greatly between the four cases. Although the deterministic and ensemble simulations captured some aspects of the precipitation correctly in each case, they never simultaneously captured all of them satisfactorily. In general, the models predicted banded precipitation accumulations at approximately the correct time and location, but the precipitating structures were more cellular and less persistent than the coherent quasi-stationary bands that were observed. Ensemble simulations from the two different initialization times were not significantly different, which suggests a potential benefit of time-lagging subsequent ensembles to increase ensemble size. The predictive skill of the upstream larger-scale flow conditions and the simulated precipitation on the convection-permitting grids were strongly correlated, which suggests that more accurate forecasts from the parent ensemble should improve the performance of the convection-permitting ensemble nested within it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel algorithm for concurrent model state and parameter estimation in nonlinear dynamical systems. The new scheme uses ideas from three dimensional variational data assimilation (3D-Var) and the extended Kalman filter (EKF) together with the technique of state augmentation to estimate uncertain model parameters alongside the model state variables in a sequential filtering system. The method is relatively simple to implement and computationally inexpensive to run for large systems with relatively few parameters. We demonstrate the efficacy of the method via a series of identical twin experiments with three simple dynamical system models. The scheme is able to recover the parameter values to a good level of accuracy, even when observational data are noisy. We expect this new technique to be easily transferable to much larger models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Idealized explicit convection simulations of the Met Office Unified Model exhibit spontaneous self-aggregation in radiative-convective equilibrium, as seen in other models in previous studies. This self-aggregation is linked to feedbacks between radiation, surface fluxes, and convection, and the organization is intimately related to the evolution of the column water vapor field. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy (MSE), following Wing and Emanuel [2014], reveals that the direct radiative feedback (including significant cloud longwave effects) is dominant in both the initial development of self-aggregation and the maintenance of an aggregated state. A low-level circulation at intermediate stages of aggregation does appear to transport MSE from drier to moister regions, but this circulation is mostly balanced by other advective effects of opposite sign and is forced by horizontal anomalies of convective heating (not radiation). Sensitivity studies with either fixed prescribed radiative cooling, fixed prescribed surface fluxes, or both do not show full self-aggregation from homogeneous initial conditions, though fixed surface fluxes do not disaggregate an initialized aggregated state. A sensitivity study in which rain evaporation is turned off shows more rapid self-aggregation, while a run with this change plus fixed radiative cooling still shows strong self-aggregation, supporting a “moisture memory” effect found in Muller and Bony [2015]. Interestingly, self-aggregation occurs even in simulations with sea surface temperatures (SSTs) of 295 K and 290 K, with direct radiative feedbacks dominating the budget of MSE variance, in contrast to results in some previous studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Convection-permitting modelling has led to a step change in forecasting convective events. However, convection occurs within different regimes which exhibit different forecast behaviour. A convective adjustment timescale can be used to distinguish between these regimes and examine their associated predictability. The convective adjustment timescale is calculated from radiosonde ascents and found to be consistent with that derived from convection-permitting model forecasts. The model-derived convective adjustment timescale is then examined for three summers in the British Isles to determine characteristics of the convective regimes for this maritime region. Convection in the British Isles is predominantly in convective quasi-equilibrium with 85%of convection having a timescale less than or equal to three hours. This percentage varies spatially with more non-equilibriumevents occurring in the south and southwest. The convective adjustment timescale exhibits a diurnal cycle over land. The nonequilibrium regime occurs more frequently at mid-range wind speeds and with winds from southerly to westerly sectors. Most non-equilibrium convective events in the British Isles are initiated near large coastal orographic gradients or on the European continent. Thus, the convective adjustment timescale is greatest when the location being examined is immediately downstream of large orographic gradients and decreases with distance from the convective initiation region. The dominance of convective quasiequilibrium conditions over the British Isles argues for the use of large-member ensembles in probabilistic forecasts for this region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent field campaign in southwest England used numerical modeling integrated with aircraft and radar observations to investigate the dynamic and microphysical interactions that can result in heavy convective precipitation. The COnvective Precipitation Experiment (COPE) was a joint UK-US field campaign held during the summer of 2013 in the southwest peninsula of England, designed to study convective clouds that produce heavy rain leading to flash floods. The clouds form along convergence lines that develop regularly due to the topography. Major flash floods have occurred in the past, most famously at Boscastle in 2004. It has been suggested that much of the rain was produced by warm rain processes, similar to some flash floods that have occurred in the US. The overarching goal of COPE is to improve quantitative convective precipitation forecasting by understanding the interactions of the cloud microphysics and dynamics and thereby to improve NWP model skill for forecasts of flash floods. Two research aircraft, the University of Wyoming King Air and the UK BAe 146, obtained detailed in situ and remote sensing measurements in, around, and below storms on several days. A new fast-scanning X-band dual-polarization Doppler radar made 360-deg volume scans over 10 elevation angles approximately every 5 minutes, and was augmented by two UK Met Office C-band radars and the Chilbolton S-band radar. Detailed aerosol measurements were made on the aircraft and on the ground. This paper: (i) provides an overview of the COPE field campaign and the resulting dataset; (ii) presents examples of heavy convective rainfall in clouds containing ice and also in relatively shallow clouds through the warm rain process alone; and (iii) explains how COPE data will be used to improve high-resolution NWP models for operational use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Madden-Julian Oscillation (MJO) is the dominant mode of intraseasonal variability in the Trop- ics. It can be characterised as a planetary-scale coupling between the atmospheric circulation and organised deep convection that propagates east through the equatorial Indo-Pacific region. The MJO interacts with weather and climate systems on a near-global scale and is a crucial source of predictability for weather forecasts on medium to seasonal timescales. Despite its global signifi- cance, accurately representing the MJO in numerical weather prediction (NWP) and climate models remains a challenge. This thesis focuses on the representation of the MJO in the Integrated Forecasting System (IFS) at the European Centre for Medium-Range Weather Forecasting (ECMWF), a state-of-the-art NWP model. Recent modifications to the model physics in Cycle 32r3 (Cy32r3) of the IFS led to ad- vances in the simulation of the MJO; for the first time the observed amplitude of the MJO was maintained throughout the integration period. A set of hindcast experiments, which differ only in their formulation of convection, have been performed between May 2008 and April 2009 to asses the sensitivity of MJO simulation in the IFS to the Cy32r3 convective parameterization. Unique to this thesis is the attribution of the advances in MJO simulation in Cy32r3 to the mod- ified convective parameterization, specifically, the relative-humidity-dependent formulation for or- ganised deep entrainment. Increasing the sensitivity of the deep convection scheme to environmen- tal moisture is shown to modify the relationship between precipitation and moisture in the model. Through dry-air entrainment, convective plumes ascending in low-humidity environments terminate lower in the atmosphere. As a result, there is an increase in the occurrence of cumulus congestus, which acts to moisten the mid-troposphere. Due to the modified precipitation-moisture relationship more moisture is able to build up which effectively preconditions the tropical atmosphere for the transition to deep convection. Results from this thesis suggest that a tropospheric moisture control on convection is key to simulating the interaction between the physics and large-scale circulation associated with the MJO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cool materials are characterized by high solar reflectance and high thermal emittance; when applied to the external surface of a roof, they make it possible to limit the amount of solar irradiance absorbed by the roof, and to increase the rate of heat flux emitted by irradiation to the environment, especially during nighttime. However, a roof also releases heat by convection on its external surface; this mechanism is not negligible, and an incorrect evaluation of its entity might introduce significant inaccuracy in the assessment of the thermal performance of a cool roof, in terms of surface temperature and rate of heat flux transferred to the indoors. This issue is particularly relevant in numerical simulations, which are essential in the design stage, therefore it deserves adequate attention. In the present paper, a review of the most common algorithms used for the calculation of the convective heat transfer coefficient due to wind on horizontal building surfaces is presented. Then, with reference to a case study in Italy, the simulated results are compared to the outcomes of a measurement campaign. Hence, the most appropriate algorithms for the convective coefficient are identified, and the errors deriving by an incorrect selection of this coefficient are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of kilometre-scale ensembles in operational forecasting provides new challenges for forecast interpretation and evaluation to account for uncertainty on the convective scale. A new neighbourhood based method is presented for evaluating and characterising the local predictability variations from convective scale ensembles. Spatial scales over which ensemble forecasts agree (agreement scales, S^A) are calculated at each grid point ij, providing a map of the spatial agreement between forecasts. By comparing the average agreement scale obtained from ensemble member pairs (S^A(mm)_ij), with that between members and radar observations (S^A(mo)_ij), this approach allows the location-dependent spatial spread-skill relationship of the ensemble to be assessed. The properties of the agreement scales are demonstrated using an idealised experiment. To demonstrate the methods in an operational context the S^A(mm)_ij and S^A(mo)_ij are calculated for six convective cases run with the Met Office UK Ensemble Prediction System. The S^A(mm)_ij highlight predictability differences between cases, which can be linked to physical processes. Maps of S^A(mm)_ij are found to summarise the spatial predictability in a compact and physically meaningful manner that is useful for forecasting and for model interpretation. Comparison of S^A(mm)_ij and S^A(mo)_ij demonstrates the case-by-case and temporal variability of the spatial spread-skill, which can again be linked to physical processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The redesign of defined benefit pension schemes usually results in a substantial redistribution of wealth between age cohorts of members, pensioners, and the sponsor. This is the first study to quantify the redistributive effects of a rule change by a real world scheme (the Universities Superannuation Scheme, USS) where the sponsor underwrites the pension promise. In October 2011 USS closed its final salary scheme to new members, opened a career average revalued earnings (CARE) section, and moved to ‘cap and share’ contribution rates. We find that the pre-October 2011 scheme was not viable in the long run, while the post-October 2011 scheme is probably viable in the long run, but faces medium term problems. In October 2011 future members of USS lost 65% of their pension wealth (or roughly £100,000 per head), equivalent to a reduction of roughly 11% in their total compensation, while those aged over 57 years lost almost nothing. The riskiness of the pension wealth of future members increased by a third, while the riskiness of the present value of the sponsor’s future contributions reduced by 10%. Finally, the sponsor’s wealth increased by about £32.5 billion, equivalent to a reduction of 26% in their pension costs.