349 resultados para climate change
Resumo:
Paul Crutzen (2006) has suggested a research initiative to consider whether it would be feasible to artificially enhance the albedo of the planet Earth to counteract greenhouse warming. The enhancement of albedo would be achieved by intentionally injecting sulfur into the stratosphere. The rational for proposing the experiment is the observed cooling of the atmosphere following the recent major volcanic eruptions by El Chichon in 1984 and Mount Pinatubo in 1991 (Hansen et al., 1992). Although I am principally not against a research initiative to study such a potential experiment, I do have important reservations concerning its general feasibility. And its potential feasibility, I believe, must be the key motivation for embarking on such a study. Here I will bring up three major issues, which must be more thoroughly understood before any geo-engineering of climate could be considered, if at all. The three issues are (i) the lack of accuracy in climate prediction, (ii) the huge difference in timescale between the effect of greenhouse gases and the effect of aerosols and (iii) serious environmental problems which may be caused by high carbon dioxide concentration irrespective of the warming of the climate.
Resumo:
The time-dependent climate response to changing concentrations of greenhouse gases and sulfate aerosols is studied using a coupled general circulation model of the atmosphere and the ocean (ECHAM4/OPYC3). The concentrations of the well-mixed greenhouse gases like CO2, CH4, N2O, and CFCs are prescribed for the past (1860–1990) and projected into the future according to International Panel on Climate Change (IPCC) scenario IS92a. In addition, the space–time distribution of tropospheric ozone is prescribed, and the tropospheric sulfur cycle is calculated within the coupled model using sulfur emissions of the past and projected into the future (IS92a). The radiative impact of the aerosols is considered via both the direct and the indirect (i.e., through cloud albedo) effect. It is shown that the simulated trend in sulfate deposition since the end of the last century is broadly consistent with ice core measurements, and the calculated radiative forcings from preindustrial to present time are within the uncertainty range estimated by IPCC. Three climate perturbation experiments are performed, applying different forcing mechanisms, and the results are compared with those obtained from a 300-yr unforced control experiment. As in previous experiments, the climate response is similar, but weaker, if aerosol effects are included in addition to greenhouse gases. One notable difference to previous experiments is that the strength of the Indian summer monsoon is not fundamentally affected by the inclusion of aerosol effects. Although the monsoon is damped compared to a greenhouse gas only experiment, it is still more vigorous than in the control experiment. This different behavior, compared to previous studies, is the result of the different land–sea distribution of aerosol forcing. Somewhat unexpected, the intensity of the global hydrological cycle becomes weaker in a warmer climate if both direct and indirect aerosol effects are included in addition to the greenhouse gases. This can be related to anomalous net radiative cooling of the earth’s surface through aerosols, which is balanced by reduced turbulent transfer of both sensible and latent heat from the surface to the atmosphere.
Resumo:
Dynamics affects the distribution and abundance of stratospheric ozone directly through transport of ozone itself and indirectly through its effect on ozone chemistry via temperature and transport of other chemical species. Dynamical processes must be considered in order to understand past ozone changes, especially in the northern hemisphere where there appears to be significant low-frequency variability which can look “trend-like” on decadal time scales. A major challenge is to quantify the predictable, or deterministic, component of past ozone changes. Over the coming century, changes in climate will affect the expected recovery of ozone. For policy reasons it is important to be able to distinguish and separately attribute the effects of ozone-depleting substances and greenhouse gases on both ozone and climate. While the radiative-chemical effects can be relatively easily identified, this is not so evident for dynamics — yet dynamical changes (e.g., changes in the Brewer-Dobson circulation) could have a first-order effect on ozone over particular regions. Understanding the predictability and robustness of such dynamical changes represents another major challenge. Chemistry-climate models have recently emerged as useful tools for addressing these questions, as they provide a self-consistent representation of dynamical aspects of climate and their coupling to ozone chemistry. We can expect such models to play an increasingly central role in the study of ozone and climate in the future, analogous to the central role of global climate models in the study of tropospheric climate change.
Resumo:
This paper presents an assessment of the impacts of climate change on a series of indicators of hydrological regimes across the global domain, using a global hydrological model run with climate scenarios constructed using pattern-scaling from 21 CMIP3 (Coupled Model Intercomparison Project Phase 3) climate models. Changes are compared with natural variability, with a significant change being defined as greater than the standard deviation of the hydrological indicator in the absence of climate change. Under an SRES (Special Report on Emissions Scenarios) A1b emissions scenario, substantial proportions of the land surface (excluding Greenland and Antarctica) would experience significant changes in hydrological behaviour by 2050; under one climate model scenario (Hadley Centre HadCM3), average annual runoff increases significantly over 47% of the land surface and decreases over 36%; only 17% therefore sees no significant change. There is considerable variability between regions, depending largely on projected changes in precipitation. Uncertainty in projected river flow regimes is dominated by variation in the spatial patterns of climate change between climate models (hydrological model uncertainty is not included). There is, however, a strong degree of consistency in the overall magnitude and direction of change. More than two-thirds of climate models project a significant increase in average annual runoff across almost a quarter of the land surface, and a significant decrease over 14%, with considerably higher degrees of consistency in some regions. Most climate models project increases in runoff in Canada and high-latitude eastern Europe and Siberia, and decreases in runoff in central Europe, around the Mediterranean, the Mashriq, central America and Brasil. There is some evidence that projecte change in runoff at the regional scale is not linear with change in global average temperature change. The effects of uncertainty in the rate of future emissions is relatively small
Resumo:
The currently available model-based global data sets of atmospheric circulation are a by-product of the daily requirement of producing initial conditions for numerical weather prediction (NWP) models. These data sets have been quite useful for studying fundamental dynamical and physical processes, and for describing the nature of the general circulation of the atmosphere. However, due to limitations in the early data assimilation systems and inconsistencies caused by numerous model changes, the available model-based global data sets may not be suitable for studying global climate change. A comprehensive analysis of global observations based on a four-dimensional data assimilation system with a realistic physical model should be undertaken to integrate space and in situ observations to produce internally consistent, homogeneous, multivariate data sets for the earth's climate system. The concept is equally applicable for producing data sets for the atmosphere, the oceans, and the biosphere, and such data sets will be quite useful for studying global climate change.
Resumo:
Purpose – This paper aims to explore the nature of the emerging discourse of private climate change reporting, which takes place in one-on-one meetings between institutional investors and their investee companies. Design/methodology/approach – Semi-structured interviews were conducted with representatives from 20 UK investment institutions to derive data which was then coded and analysed, in order to derive a picture of the emerging discourse of private climate change reporting, using an interpretive methodological approach, in addition to explorative analysis using NVivo software. Findings – The authors find that private climate change reporting is dominated by a discourse of risk and risk management. This emerging risk discourse derives from institutional investors' belief that climate change represents a material risk, that it is the most salient sustainability issue, and that their clients require them to manage climate change-related risk within their portfolio investment. It is found that institutional investors are using the private reporting process to compensate for the acknowledged inadequacies of public climate change reporting. Contrary to evidence indicating corporate capture of public sustainability reporting, these findings suggest that the emerging private climate change reporting discourse is being captured by the institutional investment community. There is also evidence of an emerging discourse of opportunity in private climate change reporting as the institutional investors are increasingly aware of a range of ways in which climate change presents material opportunities for their investee companies to exploit. Lastly, the authors find an absence of any ethical discourse, such that private climate change reporting reinforces rather than challenges the “business case” status quo. Originality/value – Although there is a wealth of sustainability reporting research, there is no academic research on private climate change reporting. This paper attempts to fill this gap by providing rich interview evidence regarding the nature of the emerging private climate change reporting discourse.
Resumo:
A fingerprint method for detecting anthropogenic climate change is applied to new simulations with a coupled ocean-atmosphere general circulation model (CGCM) forced by increasing concentrations of greenhouse gases and aerosols covering the years 1880 to 2050. In addition to the anthropogenic climate change signal, the space-time structure of the natural climate variability for near-surface temperatures is estimated from instrumental data over the last 134 years and two 1000 year simulations with CGCMs. The estimates are compared with paleoclimate data over 570 years. The space-time information on both the signal and the noise is used to maximize the signal-to-noise ratio of a detection variable obtained by applying an optimal filter (fingerprint) to the observed data. The inclusion of aerosols slows the predicted future warming. The probability that the observed increase in near-surface temperatures in recent decades is of natural origin is estimated to be less than 5%. However, this number is dependent on the estimated natural variability level, which is still subject to some uncertainty.
Resumo:
Increased risks of extinction to populations of animals and plants under changing climate have now been demonstrated for many taxa. This study assesses the extinction risks to species within an important genus of pollinating bees (Colletes: Apidae) by estimating the expected changes in the area and isolation of suitable habitat under predicted climatic condition for 2050. Suitable habitat was defined on the basis of the presence of known forage plants as well as climatic suitability. To investigate whether ecological specialisation was linked to extinction risk we compared three species which were generalist pollen foragers on several plant families with three species which specialised on pollen from a single plant species. Both specialist and generalist species showed an increased risk of extinction with shifting climate, and this was particularly high for the most specialised species (Colletes anchusae and C. wolfi). The forage generalist C. impunctatus, which is associated with Boreo-Alpine environments, is potentially threatened through significant reduction in available climatic niche space. Including the distribution of the principal or sole pollen forage plant, when modelling the distribution of monolectic or narrowly oligolectic species, did not improve the predictive accuracy of our models as the plant species were considerably more widespread than the specialised bees associated with them.
Resumo:
Accelerated climate change affects components of complex biological interactions differentially, often causing changes that are difficult to predict. Crop yield and quality are affected by climate change directly, and indirectly, through diseases that themselves will change but remain important. These effects are difficult to dissect and model as their mechanistic bases are generally poorly understood. Nevertheless, a combination of integrated modelling from different disciplines and multi-factorial experimentation will advance our understanding and prioritisation of the challenges. Food security brings in additional socio-economic, geographical and political factors. Enhancing resilience to the effects of climate change is important for all these systems and functional diversity is one of the most effective targets for improved sustainability.
Resumo:
Many reasons are being advanced for the current ‘food crisis’ including financial speculation,increased demand for grains, export bans on selected foodstuffs, inadequate grain stocks, higher oil prices, poor harvests and the use of crop lands for the production of biofuels. This paper reviews the present knowledge of recorded impacts of climate change and variability on crop production, in order to estimate its contribution to the current situation. Many studies demonstrate increased regional temperatures over the last 40 years (often through greater increases in minimum rather than maximum temperatures), but effects on crop yields are mixed. Distinguishing climate effects from changes in yield resulting from improved crop management and genotypes is difficult, but phenological changes affecting sowing, maturity and disease incidence are emerging. Anthropogenic factors appear to be a significant contributory factor to the observed decline in rainfall in southwestern and southeastern Australia, which reduced tradable wheat grain during 2007. Indirect effects of climate change through actions to mitigate or adapt to anticipated changes in climate are also evident. The amount of land diverted from crop production to biofuel production is small but has had a disproportionate effect on tradable grains from the USA. Adaptation of crop production practices and other components of the food system contributing to food security in response to variable and changing climates have occurred, but those households without adequate livelihoods are most in danger of becoming food insecure. Overall, we conclude that changing climate is a small contributor to the current food crisis but cannot be ignored.