235 resultados para Practical algorithm
Resumo:
In this paper we propose an efficient two-level model identification method for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularization parameters in the elastic net are optimized using a particle swarm optimization (PSO) algorithm at the upper level by minimizing the leave one out (LOO) mean square error (LOOMSE). Illustrative examples are included to demonstrate the effectiveness of the new approaches.
Resumo:
This paper presents practical approaches to the problem of sample size re-estimation in the case of clinical trials with survival data when proportional hazards can be assumed. When data are readily available at the time of the review, on a full range of survival experiences across the recruited patients, it is shown that, as expected, performing a blinded re-estimation procedure is straightforward and can help to maintain the trial's pre-specified error rates. Two alternative methods for dealing with the situation where limited survival experiences are available at the time of the sample size review are then presented and compared. In this instance, extrapolation is required in order to undertake the sample size re-estimation. Worked examples, together with results from a simulation study are described. It is concluded that, as in the standard case, use of either extrapolation approach successfully protects the trial error rates. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Undirected graphical models are widely used in statistics, physics and machine vision. However Bayesian parameter estimation for undirected models is extremely challenging, since evaluation of the posterior typically involves the calculation of an intractable normalising constant. This problem has received much attention, but very little of this has focussed on the important practical case where the data consists of noisy or incomplete observations of the underlying hidden structure. This paper specifically addresses this problem, comparing two alternative methodologies. In the first of these approaches particle Markov chain Monte Carlo (Andrieu et al., 2010) is used to efficiently explore the parameter space, combined with the exchange algorithm (Murray et al., 2006) for avoiding the calculation of the intractable normalising constant (a proof showing that this combination targets the correct distribution in found in a supplementary appendix online). This approach is compared with approximate Bayesian computation (Pritchard et al., 1999). Applications to estimating the parameters of Ising models and exponential random graphs from noisy data are presented. Each algorithm used in the paper targets an approximation to the true posterior due to the use of MCMC to simulate from the latent graphical model, in lieu of being able to do this exactly in general. The supplementary appendix also describes the nature of the resulting approximation.
Resumo:
We introduce a new algorithm for source identification and field splitting based on the point source method (Potthast 1998 A point-source method for inverse acoustic and electromagnetic obstacle scattering problems IMA J. Appl. Math. 61 119–40, Potthast R 1996 A fast new method to solve inverse scattering problems Inverse Problems 12 731–42). The task is to separate the sound fields uj, j = 1, ..., n of sound sources supported in different bounded domains G1, ..., Gn in from measurements of the field on some microphone array—mathematically speaking from the knowledge of the sum of the fields u = u1 + + un on some open subset Λ of a plane. The main idea of the scheme is to calculate filter functions , to construct uℓ for ℓ = 1, ..., n from u|Λ in the form We will provide the complete mathematical theory for the field splitting via the point source method. In particular, we describe uniqueness, solvability of the problem and convergence and stability of the algorithm. In the second part we describe the practical realization of the splitting for real data measurements carried out at the Institute for Sound and Vibration Research at Southampton, UK. A practical demonstration of the original recording and the splitting results for real data is available online.
Resumo:
In this paper, the global market potential of solar thermal, photovoltaic (PV) and combined photovoltaic/thermal (PV/T) technologies in current time and near future was discussed. The concept of the PV/T and the theory behind the PV/T operation were briefly introduced, and standards for evaluating technical, economic and environmental performance of the PV/T systems were addressed. A comprehensive literature review into R&D works and practical application of the PV/T technology was illustrated and the review results were critically analysed in terms of PV/T type and research methodology used. The major features, current status, research focuses and existing difficulties/barriers related to the various types of PV/T were identified. The research methods, including theoretical analyses and computer simulation, experimental and combined experimental/theoretical investigation, demonstration and feasibility study, as well as economic and environmental analyses, applied into the PV/T technology were individually discussed, and the achievement and problems remaining in each research method category were described. Finally, opportunities for further work to carry on PV/T study were identified. The review research indicated that air/water-based PV/T systems are the commonly used technologies but their thermal removal effectiveness is lower. Refrigerant/heat-pipe-based PV/Ts, although still in research/laboratory stage, could achieve much higher solar conversion efficiencies over the air/water-based systems. However, these systems were found a few technical challenges in practice which require further resolutions. The review research suggested that further works could be undertaken to (1) develop new feasible, economic and energy efficient PV/T systems; (2) optimise the structural/geometrical configurations of the existing PV/T systems; (3) study long term dynamic performance of the PV/T systems; (4) demonstrate the PV/T systems in real buildings and conduct the feasibility study; and (5) carry on advanced economic and environmental analyses. This review research helps finding the questions remaining in PV/T technology, identify new research topics/directions to further improve the performance of the PV/T, remove the barriers in PV/T practical application, establish the standards/regulations related to PV/T design and installation, and promote its market penetration throughout the world.
Resumo:
Advances in hardware and software in the past decade allow to capture, record and process fast data streams at a large scale. The research area of data stream mining has emerged as a consequence from these advances in order to cope with the real time analysis of potentially large and changing data streams. Examples of data streams include Google searches, credit card transactions, telemetric data and data of continuous chemical production processes. In some cases the data can be processed in batches by traditional data mining approaches. However, in some applications it is required to analyse the data in real time as soon as it is being captured. Such cases are for example if the data stream is infinite, fast changing, or simply too large in size to be stored. One of the most important data mining techniques on data streams is classification. This involves training the classifier on the data stream in real time and adapting it to concept drifts. Most data stream classifiers are based on decision trees. However, it is well known in the data mining community that there is no single optimal algorithm. An algorithm may work well on one or several datasets but badly on others. This paper introduces eRules, a new rule based adaptive classifier for data streams, based on an evolving set of Rules. eRules induces a set of rules that is constantly evaluated and adapted to changes in the data stream by adding new and removing old rules. It is different from the more popular decision tree based classifiers as it tends to leave data instances rather unclassified than forcing a classification that could be wrong. The ongoing development of eRules aims to improve its accuracy further through dynamic parameter setting which will also address the problem of changing feature domain values.
Resumo:
This contribution introduces a new digital predistorter to compensate serious distortions caused by memory high power amplifiers (HPAs) which exhibit output saturation characteristics. The proposed design is based on direct learning using a data-driven B-spline Wiener system modeling approach. The nonlinear HPA with memory is first identified based on the B-spline neural network model using the Gauss-Newton algorithm, which incorporates the efficient De Boor algorithm with both B-spline curve and first derivative recursions. The estimated Wiener HPA model is then used to design the Hammerstein predistorter. In particular, the inverse of the amplitude distortion of the HPA's static nonlinearity can be calculated effectively using the Newton-Raphson formula based on the inverse of De Boor algorithm. A major advantage of this approach is that both the Wiener HPA identification and the Hammerstein predistorter inverse can be achieved very efficiently and accurately. Simulation results obtained are presented to demonstrate the effectiveness of this novel digital predistorter design.
Resumo:
Evolutionary meta-algorithms for pulse shaping of broadband femtosecond duration laser pulses are proposed. The genetic algorithm searching the evolutionary landscape for desired pulse shapes consists of a population of waveforms (genes), each made from two concatenated vectors, specifying phases and magnitudes, respectively, over a range of frequencies. Frequency domain operators such as mutation, two-point crossover average crossover, polynomial phase mutation, creep and three-point smoothing as well as a time-domain crossover are combined to produce fitter offsprings at each iteration step. The algorithm applies roulette wheel selection; elitists and linear fitness scaling to the gene population. A differential evolution (DE) operator that provides a source of directed mutation and new wavelet operators are proposed. Using properly tuned parameters for DE, the meta-algorithm is used to solve a waveform matching problem. Tuning allows either a greedy directed search near the best known solution or a robust search across the entire parameter space.
Resumo:
This chapter provides an introductory overview of how the term ‘community’ has been conceptualized in sociological literatures, noting that there remains considerable uncertainty with regard to the way in which communities could or should be defined. The chapter examines the salience of underlying concepts of social organization that can shape and influence the extent to which programmes of engagement are likely to be successful. Drawing on recent empirical work some of the key opportunities and challenges for local government in translating the concepts into practice are considered.
Resumo:
This paper analyze and study a pervasive computing system in a mining environment to track people based on RFID (radio frequency identification) technology. In first instance, we explain the RFID fundamentals and the LANDMARC (location identification based on dynamic active RFID calibration) algorithm, then we present the proposed algorithm combining LANDMARC and trilateration technique to collect the coordinates of the people inside the mine, next we generalize a pervasive computing system that can be implemented in mining, and finally we show the results and conclusions.