204 resultados para North Kingstown
Resumo:
In 1984 and 1985 a series of experiments was undertaken in which dayside ionospheric flows were measured by the EISCAT “Polar” experiment, while observations of the solar wind and interplanetary magnetic field (IMF) were made by the AMPTE UKS and IRM spacecraft upstream from the Earth's bow shock. As a result, 40 h of simultaneous data were acquired, which are analysed in this paper to investigate the relationship between the ionospheric flow and the North-South (Bz) component of the IMF. The ionospheric flow data have 2.5 min resolution, and cover the dayside local time sector from ∼ 09:30 to ∼ 18:30 M.L.T. and the latitude range from 70.8° to 74.3°. Using cross-correlation analysis it is shown that clear relationships do exist between the ionospheric flow and IMF Bz, but that the form of the relations depends strongly on latitude and local time. These dependencies are readily interpreted in terms of a twinvortex flow pattern in which the magnitude and latitudinal extent of the flows become successively larger as Bz becomes successively more negative. Detailed maps of the flow are derived for a range of Bz values (between ± 4 nT) which clearly demonstrate the presence of these effects in the data. The data also suggest that the morning reversal in the East-West component of flow moves to earlier local times as Bz, declines in value and becomes negative. The correlation analysis also provides information on the ionospheric response time to changes in IMF Bz, it being found that the response is very rapid indeed. The most rapid response occurs in the noon to mid-afternoon sector, where the westward flows of the dusk cell respond with a delay of 3.9 ± 2.2 min to changes in the North-South field at the subsolar magnetopause. The flows appear to evolve in form over the subsequent ~ 5 min interval, however, as indicated by the longer response times found for the northward component of flow in this sector (6.7 ±2.2 min), and in data from earlier and later local times. No evidence is found for a latitudinal gradient in response time; changes in flow take place coherently in time across the entire radar field-of-view.
Resumo:
The detection of anthropogenic climate change can be improved by recognising the seasonality in the climate change response. This is demonstrated for the North Atlantic jet (zonal wind at 850 hPa, U850) and European precipitation responses projected by the CMIP5 climate models. The U850 future response is characterised by a marked seasonality: an eastward extension of the North Atlantic jet into Europe in November-April, and a poleward shift in May-October. Under the RCP8.5 scenario, the multi-model mean response in U850 in these two extended seasonal means emerges by 2035-2040 for the lower--latitude features and by 2050-2070 for the higher--latitude features, relative to the 1960-1990 climate. This is 5-15 years earlier than when evaluated in the traditional meteorological seasons (December--February, June--August), and it results from an increase in the signal to noise ratio associated with the spatial coherence of the response within the extended seasons. The annual mean response lacks important information on the seasonality of the response without improving the signal to noise ratio. The same two extended seasons are demonstrated to capture the seasonality of the European precipitation response to climate change and to anticipate its emergence by 10-20 years. Furthermore, some of the regional responses, such as the Mediterranean precipitation decline and the U850 response in North Africa in the extended winter, are projected to emerge by 2020-2025, according to the models with a strong response. Therefore, observations might soon be useful to test aspects of the atmospheric circulation response predicted by some of the CMIP5 models.
Resumo:
It has been well documented that there is an anticyclonic anomaly over the western North Pacific (WNPAC, hereafter) during El Niño decaying summer. This El Niño-WNPAC relationship is greatly useful for the seasonal prediction of summer climate in the WNP and East Asia. In this study, we investigate the modification of the El Niño-WNPAC relationship induced by a weakened Atlantic thermohaline circulation (THC) in a water-hosing experiment. The results suggest that the WNPAC during the El Niño decaying summer, as well as the associated precipitation anomaly over the WNP, is intensified under the weakened THC. On the one hand, this intensification is in response to the increased amplitude and frequency of El Niño events in the water-hosing experiment. On the other hand, this intensification is also because of greater climatological humidity over the western to central North Pacific under the weakened THC. We suggest that the increase of climatological humidity over the western to central North Pacific during summer under the weakened THC is favorable for enhanced interannual variability of precipitation, and therefore favorable for the intensification of the WNPAC during El Niño decaying summer. This study suggests a possible modulation of the El Niño–Southern Oscillation-WNP summer monsoon relationship by the low-frequency fluctuation of Atlantic sea surface temperature. The results offer an explanation for the observed modification of the multidecadal fluctuation of El Niño-WNPAC relationship by the Atlantic multidecadal oscillation.
Resumo:
The tropical North Atlantic (TNA) sea surface temperature (SST) has been identified as one of regulators on the boreal summer climate over the western North Pacific (WNP), in addition to SSTs in the tropical Pacific and Indian Oceans. The major physical process proposed is that the TNA warming induces a pair of cyclonic circulation anomaly over the eastern Pacific and negative precipitation anomalies over the eastern to central tropical Pacific, which in turn lead to an anticyclonic circulation anomaly over the western to central North Pacific. This study further demonstrates that the modulation of the TNA warming to the WNP summer climate anomaly tends to be intensified under background of the weakened Atlantic thermohaline circulation (THC) by using a water-hosing experiment. The results suggest that the weakened THC induces a decrease in thermocline depth over the TNA region, resulting in the enhanced sensitivity of SST variability to wind anomalies and thus intensification of the interannual variation of TNA SST. Under the weakened THC, the atmospheric responses to the TNA warming are westward shifted, enhancing the anticyclonic circulation and negative precipitation anomaly over the WNP. This study supports the recent finding that the negative phase of the Atlantic multidecadal oscillation after the late 1960s has been favourable for the strengthening of the connection between TNA SST variability and WNP summer climate and has important implications for seasonal prediction and future projection of the WNP summer climate.
Resumo:
Instrumental observations, palaeo-proxies, and climate models suggest significant decadal variability within the North Atlantic subpolar gyre (NASPG). However, a poorly sampled observational record and a diversity of model behaviours mean that the precise nature and mechanisms of this variability are unclear. Here, we analyse an exceptionally large multi-model ensemble of 42 present-generation climate models to test whether NASPG mean state biases systematically affect the representation of decadal variability. Temperature and salinity biases in the Labrador Sea co-vary and influence whether density variability is controlled by temperature or salinity variations. Ocean horizontal resolution is a good predictor of the biases and the location of the dominant dynamical feedbacks within the NASPG. However, we find no link to the spectral characteristics of the variability. Our results suggest that the mean state and mechanisms of variability within the NASPG are not independent. This represents an important caveat for decadal predictions using anomaly-assimilation methods.
Resumo:
This study investigates the relationship between the wind wave climate and the main climate modes of atmospheric variability in the North Atlantic Ocean. The modes considered are the North Atlantic Oscillation (NAO), the East Atlantic (EA) pattern, the East Atlantic Western Russian (EA/WR) pattern and the Scandinavian (SCAN) pattern. The wave dataset consists of buoys records, remote sensing altimetry observations and a numerical hindcast providing significant wave height (SWH), mean wave period (MWP) and mean wave direction (MWD) for the period 1989–2009. After evaluating the reliability of the hindcast, we focus on the impact of each mode on seasonal wave parameters and on the relative importance of wind-sea and swell components. Results demonstrate that the NAO and EA patterns are the most relevant, whereas EA/WR and SCAN patterns have a weaker impact on the North Atlantic wave climate variability. During their positive phases, both NAO and EA patterns are related to winter SWH at a rate that reaches 1 m per unit index along the Scottish coast (NAO) and Iberian coast (EA) patterns. In terms of winter MWD, the two modes induce a counterclockwise shift of up to 65° per negative NAO (positive EA) unit over west European coasts. They also increase the winter MWP in the North Sea and in the Bay of Biscay (up to 1 s per unit NAO) and along the western coasts of Europe and North Africa (1 s per unit EA). The impact of winter EA pattern on all wave parameters is mostly caused through the swell wave component.
Resumo:
How tropical cyclone (TC) activity in the northwestern Pacific might change in a future climate is assessed using multidecadal Atmospheric Model Intercomparison Project (AMIP)-style and time-slice simulations with the ECMWF Integrated Forecast System (IFS) at 16-km and 125-km global resolution. Both models reproduce many aspects of the present-day TC climatology and variability well, although the 16-km IFS is far more skillful in simulating the full intensity distribution and genesis locations, including their changes in response to El Niño–Southern Oscillation. Both IFS models project a small change in TC frequency at the end of the twenty-first century related to distinct shifts in genesis locations. In the 16-km IFS, this shift is southward and is likely driven by the southeastward penetration of the monsoon trough/subtropical high circulation system and the southward shift in activity of the synoptic-scale tropical disturbances in response to the strengthening of deep convective activity over the central equatorial Pacific in a future climate. The 16-km IFS also projects about a 50% increase in the power dissipation index, mainly due to significant increases in the frequency of the more intense storms, which is comparable to the natural variability in the model. Based on composite analysis of large samples of supertyphoons, both the development rate and the peak intensities of these storms increase in a future climate, which is consistent with their tendency to develop more to the south, within an environment that is thermodynamically more favorable for faster development and higher intensities. Coherent changes in the vertical structure of supertyphoon composites show system-scale amplification of the primary and secondary circulations with signs of contraction, a deeper warm core, and an upward shift in the outflow layer and the frequency of the most intense updrafts. Considering the large differences in the projections of TC intensity change between the 16-km and 125-km IFS, this study further emphasizes the need for high-resolution modeling in assessing potential changes in TC activity.
Resumo:
The exact pattern, process and timing of the human re-colonization of northern Europe after the end of the last Ice Age remain controversial. Recent research has provided increasingly early dates for at least pioneer explorations of latitudes above 54°N in many regions, yet the far north-west of the European landmass, Scotland, has remained an unexplained exception to this pattern. Although the recently described Hamburgian artefacts from Howburn and an assemblage belonging to the arch-backed point complex from Kilmelfort Cave have established at least a sporadic human presence during earlier stages of the Lateglacial Interstadial, we currently lack evidence for Younger Dryas/Greenland Stadial 1 (GS-1) activity other than rare stray finds that have been claimed to be of Ahrensburgian affiliation but are difficult to interpret in isolation. We here report the discovery of chipped stone artefacts with technological and typological characteristics similar to those of the continental Ahrensburgian at a locality in western Scotland. A preliminary analysis of associated tephra, pollen and phytoliths, along with microstratigraphic analysis, suggest the artefacts represent one or more episodes of human activity that fall within the second half of GS-1 and the Preboreal period
Resumo:
There is increasing concern that the intensification of dairy production reduces the concentrations of nutritionally desirable compounds in milk. This study therefore compared important quality parameters (protein and fatty acid profiles; α-tocopherol and carotenoid concentrations) in milk from four dairy systems with contrasting production intensities (in terms of feeding regimens and milking systems). The concentrations of several nutritionally desirable compounds (β-lactoglobulin, omega-3 fatty acids, omega-3/omega-6 ratio, conjugated linoleic acid c9t11, and/or carotenoids) decreased with increasing feeding intensity (organic outdoor ≥ conventional outdoor ≥ conventional indoors). Milking system intensification (use of robotic milking parlors) had a more limited effect on milk composition, but increased mastitis incidence. Multivariate analyses indicated that differences in milk quality were mainly linked to contrasting feeding regimens and that milking system and breed choice also contributed to differences in milk composition between production systems.
Resumo:
Results of extensive site reconnaissance on the Isles of Tiree, Coll and north-west Mull, Inner Hebrides are presented. Pollen-stratigraphic records were compiled from a profile from Glen Aros, north-west Mull and from two profiles on Coll located at Loch an t-Sagairt and Caolas an Eilean. Quantification of microscopic charcoal provided records that were used to facilitate a preliminary evaluation of the causal driving mechanisms of vegetation change. Bayesian modelling of radiocarbon dates was used to construct preliminary chronological frameworks for these records. Basal sedimentary deposits at Glen Aros contain pollen records that correspond with vegetation succession typical of the early Holocene dating to c. 11,370 cal BP. Woodland development is a key feature of the pollen records dating to the early Holocene, while records from Loch an t-Sagairt show that blanket mire communities were widespread in north-west Coll by c. 9800 cal BP. The Corylus-rise is dated to c. 10,710 cal BP at Glen Aros and c. 9905 cal BP at Loch an t-Sagairt, with records indicating extensive cover of hazel woodland with birch. All of the major arboreal taxa were recorded, though Quercus and Ulmus were nowhere widespread. Analysis of wood charcoal remains from a Mesolithic site at Fiskary Bay, Coll indicate that Salix and Populus are likely to be under-represented in the pollen records. Reconstructed isopoll maps appear to underplay the importance of alder in western Scotland during the mid-Holocene. Alder-rise expansions in microscopic charcoal dating to c. 7300 cal BP at Glen Aros and c. 6510 to 5830 cal BP on Coll provide records of significance to the issue of human-induced burning related to the expansion of alder in Britain. Increasing frequencies in microscopic charcoal are correlated with mid-Holocene records of increasing aridity in western Scotland after c. 7490 cal BP at Glen Aros, 6760 cal BP at Loch an t-Sagairt and 6590 cal BP at Caolas an Eilean, while several phases of increasing bog surface wetness were detected in the Loch an t-Sagairt archive during the Holocene. At least five phases of small-scale woodland disturbance during the Mesolithic period were identified in the Glen Aros profile dating to c. 11,650 cal BP, 9300 cal BP, 7840 cal BP, 7040 cal BP and 6100 cal BP. The timing of the third phase is coincident with evidence of Mesolithic settlement at Creit Dhu, north-west Mull. Three phases of small-scale woodland disturbance were detected at Loch an t-Sagairt dating to c. 9270 cal BP, 8770 cal BP and 8270 cal BP, all of which overlap chronologically with evidence of Mesolithic activity at Fiskary Bay, Coll. A number of these episodes are aligned chronologically with phases of Holocene climate variability such as the 8.2 K event.
Resumo:
Earth hummocks (also termed pounus or thúfur) are a common form of periglacial non-sorted patterned ground. The study objectives were to determine the morphology, distribution and development on slopes of earth hummocks in north-east Okstindan, Norway, an area with many hummocks but few documented accounts. The methodology involved detailed geomorphological mapping and precise measurement with a profileometer. The internal structure of the hummocks was investigated through excavations and sediment sample analyses. Fourteen sites with well-developed earth hummocks (accounting for over 650 individual hummock forms) were investigated. The sites have an average altitude of 750 m and occur on slopes with an average gradient of 7°. The hummock heights are in the range 0.11–0.52 m and their diameters 0.7–1.5 m, although coalescent forms are up to 5 m in length. The hummock morphology is characterised by a variable plan form, asymmetry with respect to upslope and downslope forms, downslope elongation, coalescence, and superimposed microtopography. The hummocks’ distribution appeared to have been controlled by the existence of a frost-susceptible ‘host’ sediment, but moisture availability and topographic position played a role. The authors conclude that differential frost heave and vegetation cover stability are critical for the hummocks’ longevity in the studied landscape.
Resumo:
Two decades ago, Canada, Mexico, and the United States created a continental economy. The road to integration from the signing of the North American Free Trade Agreement has not been a smooth one. Along the way, Mexico lived through a currency crisis, a democratic transition, and the rising challenge of Asian manufacturing. Canada stayed united despite surging Quebecois nationalism during the 1990s; since then, it has seen dramatic economic changes with the explosion of hydrocarbon production and a much stronger currency. The United States saw a stock-market bust, the shock of 9/11, and the near-collapse of its financial system. All of these events have transformed the relationships that emerged after NAFTA entered into force in 1994. Given the tremendous changes, one might be skeptical that the circumstances and details of the negotiation and ratification of NAFTA hold lessons for the future of North America. However, the road to NAFTA had its own difficulties, and many of the issues involved in the negotiations underpin today's challenges. NAFTA was conceived at a time of profound change in the international system. When Mexican leaders surveyed the world two decades ago, they saw emerging regional groupings in Europe, Asia, and South America. Faced with a lack of interest or compatibility, they instead doubled down on North America. How did Mexican leaders reconsider their national interests and redefine Mexico's role in the world in light of those transformations? Unpublished Mexican documents from SECOFI, the secretariate most involved in negotiating NAFTA, help illustrate Mexican thinking about its interests and role at that time. Combining those insights with analysis of newly available evidence from U.S. presidential archives, this paper sheds light on the negotiations that concluded two decades ago.