218 resultados para Ice creams
Resumo:
Using lessons from idealised predictability experiments, we discuss some issues and perspectives on the design of operational seasonal to inter-annual Arctic sea-ice prediction systems. We first review the opportunities to use a hierarchy of different types of experiment to learn about the predictability of Arctic climate. We also examine key issues for ensemble system design, such as: measuring skill, the role of ensemble size and generation of ensemble members. When assessing the potential skill of a set of prediction experiments, using more than one metric is essential as different choices can significantly alter conclusions about the presence or lack of skill. We find that increasing both the number of hindcasts and ensemble size is important for reliably assessing the correlation and expected error in forecasts. For other metrics, such as dispersion, increasing ensemble size is most important. Probabilistic measures of skill can also provide useful information about the reliability of forecasts. In addition, various methods for generating the different ensemble members are tested. The range of techniques can produce surprisingly different ensemble spread characteristics. The lessons learnt should help inform the design of future operational prediction systems.
Resumo:
The Arctic sea ice retreat has accelerated over the last decade. The negative trend is largest in summer, but substantial interannual variability still remains. Here we explore observed atmospheric conditions and feedback mechanisms during summer months of anomalous sea ice melt in the Arctic. Compositing months of anomalous low and high sea ice melt over 1979–2013, we find distinct patterns in atmospheric circulation, precipitation, radiation, and temperature. Compared to summer months of anomalous low sea ice melt, high melt months are characterized by anomalous high sea level pressure in the Arctic (up to 7 hPa), with a corresponding tendency of storms to track on a more zonal path. As a result, the Arctic receives less precipitation overall and 39% less snowfall. This lowers the albedo of the region and reduces the negative feedback the snowfall provides for the sea ice. With an anticyclonic tendency, 12 W/m2 more incoming shortwave radiation reaches the surface in the start of the season. The melting sea ice in turn promotes cloud development in the marginal ice zones and enhances downwelling longwave radiation at the surface toward the end of the season. A positive cloud feedback emerges. In midlatitudes, the more zonally tracking cyclones give stormier, cloudier, wetter, and cooler summers in most of northern Europe and around the Sea of Okhotsk. Farther south, the region from the Mediterranean Sea to East Asia experiences significant surface warming (up to 2.4◦C), possibly linked to changes in the jet stream.
Resumo:
Ice supersaturation (ISS) in the upper troposphere and lower stratosphere is important for the formation of cirrus clouds and long-lived contrails. Cold ISS (CISS) regions (taken here to be ice-supersaturated regions with temperature below 233 K) are most relevant for contrail formation.We analyse projected changes to the 250 hPa distribution and frequency of CISS regions over the 21st century using data from the Representative Concentration Pathway 8.5 simulations for a selection of Coupled Model Intercomparison Project Phase 5 models. The models show a global-mean, annual-mean decrease in CISS frequency by about one-third, from 11 to 7% by the end of the 21st century, relative to the present-day period 1979–2005. Changes are analysed in further detail for three subregions where air traffic is already high and increasing (Northern Hemisphere mid-latitudes) or expected to increase (tropics and Northern Hemisphere polar regions). The largest change is seen in the tropics, where a reduction of around 9 percentage points in CISS frequency by the end of the century is driven by the strong warming of the upper troposphere. In the Northern Hemisphere mid-latitudes the multi-model-mean change is an increase in CISS frequency of 1 percentage point; however the sign of the change is dependent not only on the model but also on latitude and season. In the Northern Hemisphere polar regions there is an increase in CISS frequency of 5 percentage points in the annual mean. These results suggest that, over the 21st century, climate change may have large impacts on the potential for contrail formation; actual changes to contrail cover will also depend on changes to the volume of air traffic, aircraft technology and flight routing.
Resumo:
We review the effects of dynamical variability on clouds and radiation in observations and models and discuss their implications for cloud feedbacks. Jet shifts produce robust meridional dipoles in upper-level clouds and longwave cloud-radiative effect (CRE), but low-level clouds, which do not simply shift with the jet, dominate the shortwave CRE. Because the effect of jet variability on CRE is relatively small, future poleward jet shifts with global warming are only a second-order contribution to the total CRE changes around the midlatitudes, suggesting a dominant role for thermodynamic effects. This implies that constraining the dynamical response is unlikely to reduce the uncertainty in extratropical cloud feedback. However, we argue that uncertainty in the cloud-radiative response does affect the atmospheric circulation response to global warming, by modulating patterns of diabatic forcing. How cloud feedbacks can affect the dynamical response to global warming is an important topic of future research.
Resumo:
The general circulation models used to simulate global climate typically feature resolution too coarse to reproduce many smaller-scale processes, which are crucial to determining the regional responses to climate change. A novel approach to downscale climate change scenarios is presented which includes the interactions between the North Atlantic Ocean and the European shelves as well as their impact on the North Atlantic and European climate. The goal of this paper is to introduce the global ocean-regional atmosphere coupling concept and to show the potential benefits of this model system to simulate present-day climate. A global ocean-sea ice-marine biogeochemistry model (MPIOM/HAMOCC) with regionally high horizontal resolution is coupled to an atmospheric regional model (REMO) and global terrestrial hydrology model (HD) via the OASIS coupler. Moreover, results obtained with ROM using NCEP/NCAR reanalysis and ECHAM5/MPIOM CMIP3 historical simulations as boundary conditions are presented and discussed for the North Atlantic and North European region. The validation of all the model components, i.e., ocean, atmosphere, terrestrial hydrology, and ocean biogeochemistry is performed and discussed. The careful and detailed validation of ROM provides evidence that the proposed model system improves the simulation of many aspects of the regional climate, remarkably the ocean, even though some biases persist in other model components, thus leaving potential for future improvement. We conclude that ROM is a powerful tool to estimate possible impacts of climate change on the regional scale.
Resumo:
Projections of Arctic sea ice thickness (SIT) have the potential to inform stakeholders about accessibility to the region, but are currently rather uncertain. The latest suite of CMIP5 Global Climate Models (GCMs) produce a wide range of simulated SIT in the historical period (1979–2014) and exhibit various biases when compared with the Pan-Arctic Ice Ocean Modelling and Assimilation System (PIOMAS) sea ice reanalysis. We present a new method to constrain such GCM simulations of SIT via a statistical bias correction technique. The bias correction successfully constrains the spatial SIT distribution and temporal variability in the CMIP5 projections whilst retaining the climatic fluctuations from individual ensemble members. The bias correction acts to reduce the spread in projections of SIT and reveals the significant contributions of climate internal variability in the first half of the century and of scenario uncertainty from mid-century onwards. The projected date of ice-free conditions in the Arctic under the RCP8.5 high emission scenario occurs in the 2050s, which is a decade earlier than without the bias correction, with potentially significant implications for stakeholders in the Arctic such as the shipping industry. The bias correction methodology developed could be similarly applied to other variables to reduce spread in climate projections more generally.
Resumo:
We describe the creation of a data set describing changes related to the presence of ice sheets, including ice-sheet extent and height, ice-shelf extent, and the distribution and elevation of ice-free land at the Last Glacial Maximum (LGM), which were used in LGM experiments conducted as part of the fifth phase of the Coupled Modelling Intercomparison Project (CMIP5) and the third phase of the Palaeoclimate Modelling Intercomparison Project (PMIP3). The CMIP5/PMIP3 data sets were created from reconstructions made by three different groups, which were all obtained using a model-inversion approach but differ in the assumptions used in the modelling and in the type of data used as constraints. The ice-sheet extent in the Northern Hemisphere (NH) does not vary substantially between the three individual data sources. The difference in the topography of the NH ice sheets is also moderate, and smaller than the differences between these reconstructions (and the resultant composite reconstruction) and ice-sheet reconstructions used in previous generations of PMIP. Only two of the individual reconstructions provide information for Antarctica. The discrepancy between these two reconstructions is larger than the difference for the NH ice sheets, although still less than the difference between the composite reconstruction and previous PMIP ice-sheet reconstructions. Although largely confined to the ice-covered regions, differences between the climate response to the individual LGM reconstructions extend over the North Atlantic Ocean and Northern Hemisphere continents, partly through atmospheric stationary waves. Differences between the climate response to the CMIP5/PMIP3 composite and any individual ice-sheet reconstruction are smaller than those between the CMIP5/PMIP3 composite and the ice sheet used in the last phase of PMIP (PMIP2).
Resumo:
This article presents SPARE-ICE, the Synergistic Passive Atmospheric Retrieval Experiment-ICE. SPARE-ICE is the first Ice Water Path (IWP) product combining infrared and microwave radiances. By using only passive operational sensors, the SPARE-ICE retrieval can be used to process data from at least the NOAA 15 to 19 and MetOp satellites, obtaining time series from 1998 onward. The retrieval is developed using collocations between passive operational sensors (solar, terrestrial infrared, microwave), the CloudSat radar, and the CALIPSO lidar. The collocations form a retrieval database matching measurements from passive sensors against the existing active combined radar-lidar product 2C-ICE. With this retrieval database, we train a pair of artificial neural networks to detect clouds and retrieve IWP. When considering solar, terrestrial infrared, and microwave-based measurements, we show that any combination of two techniques performs better than either single-technique retrieval. We choose not to include solar reflectances in SPARE-ICE, because the improvement is small, and so that SPARE-ICE can be retrieved both daytime and nighttime. The median fractional error between SPARE-ICE and 2C-ICE is around a factor 2, a figure similar to the random error between 2C-ICE ice water content (IWC) and in situ measurements. A comparison of SPARE-ICE with Moderate Resolution Imaging Spectroradiometer (MODIS), Pathfinder Atmospheric Extended (PATMOS-X), and Microwave Surface and Precipitation Products System (MSPPS) indicates that SPARE-ICE appears to perform well even in difficult conditions. SPARE-ICE is available for public use.
Resumo:
There remains large disagreement between ice-water path (IWP) in observational data sets, largely because the sensors observe different parts of the ice particle size distribution. A detailed comparison of retrieved IWP from satellite observations in the Tropics (!30 " latitude) in 2007 was made using collocated measurements. The radio detection and ranging(radar)/light detection and ranging (lidar) (DARDAR) IWP data set, based on combined radar/lidar measurements, is used as a reference because it provides arguably the best estimate of the total column IWP. For each data set, usable IWP dynamic ranges are inferred from this comparison. IWP retrievals based on solar reflectance measurements, in the moderate resolution imaging spectroradiometer (MODIS), advanced very high resolution radiometer–based Climate Monitoring Satellite Applications Facility (CMSAF), and Pathfinder Atmospheres-Extended (PATMOS-x) datasets, were found to be correlated with DARDAR over a large IWP range (~20–7000 g m -2 ). The random errors of the collocated data sets have a close to lognormal distribution, and the combined random error of MODIS and DARDAR is less than a factor of 2, which also sets the upper limit for MODIS alone. In the same way, the upper limit for the random error of all considered data sets is determined. Data sets based on passive microwave measurements, microwave surface and precipitation products system (MSPPS), microwave integrated retrieval system (MiRS), and collocated microwave only (CMO), are largely correlated with DARDAR for IWP values larger than approximately 700 g m -2 . The combined uncertainty between these data sets and DARDAR in this range is slightly less MODIS-DARDAR, but the systematic bias is nearly an order of magnitude.
Resumo:
Predicting the evolution of ice sheets requires numerical models able to accurately track the migration of ice sheet continental margins or grounding lines. We introduce a physically based moving point approach for the flow of ice sheets based on the conservation of local masses. This allows the ice sheet margins to be tracked explicitly and the waiting time behaviours to be modelled efficiently. A finite difference moving point scheme is derived and applied in a simplified context (continental radially-symmetrical shallow ice approximation). The scheme, which is inexpensive, is validated by comparing the results with moving-margin exact solutions and steady states. In both cases the scheme is able to track the position of the ice sheet margin with high precision.
Resumo:
The atmospheric response to an idealized decline in Arctic sea ice is investigated in a novel fully coupled climate model experiment. In this experiment two ensembles of single-year model integrations are performed starting on 1 April, the approximate start of the ice melt season. By perturbing the initial conditions of sea ice thickness (SIT), declines in both sea ice concentration and SIT, which result in sea ice distributions that are similar to the recent sea ice minima of 2007 and 2012, are induced. In the ice loss regions there are strong (~3 K) local increases in sea surface temperature (SST); additionally, there are remote increases in SST in the central North Pacific and subpolar gyre in the North Atlantic. Over the central Arctic there are increases in surface air temperature (SAT) of ~8 K due to increases in ocean–atmosphere heat fluxes. There are increases in SAT over continental North America that are in good agreement with recent changes as seen by reanalysis data. It is estimated that up to two-thirds of the observed increase in SAT in this region could be related to Arctic sea ice loss. In early summer there is a significant but weak atmospheric circulation response that projects onto the summer North Atlantic Oscillation (NAO). In early summer and early autumn there is an equatorward shift of the eddy-driven jet over the North Atlantic as a result of a reduction in the meridional temperature gradients. In winter there is no projection onto a particular phase of the NAO.
Resumo:
Predicting the evolution of ice sheets requires numerical models able to accurately track the migration of ice sheet continental margins or grounding lines. We introduce a physically based moving-point approach for the flow of ice sheets based on the conservation of local masses. This allows the ice sheet margins to be tracked explicitly. Our approach is also well suited to capture waiting-time behaviour efficiently. A finite-difference moving-point scheme is derived and applied in a simplified context (continental radially symmetrical shallow ice approximation). The scheme, which is inexpensive, is verified by comparing the results with steady states obtained from an analytic solution and with exact moving-margin transient solutions. In both cases the scheme is able to track the position of the ice sheet margin with high accuracy.
Resumo:
Ocean–sea ice reanalyses are crucial for assessing the variability and recent trends in the Arctic sea ice cover. This is especially true for sea ice volume, as long-term and large scale sea ice thickness observations are inexistent. Results from the Ocean ReAnalyses Intercomparison Project (ORA-IP) are presented, with a focus on Arctic sea ice fields reconstructed by state-of-the-art global ocean reanalyses. Differences between the various reanalyses are explored in terms of the effects of data assimilation, model physics and atmospheric forcing on properties of the sea ice cover, including concentration, thickness, velocity and snow. Amongst the 14 reanalyses studied here, 9 assimilate sea ice concentration, and none assimilate sea ice thickness data. The comparison reveals an overall agreement in the reconstructed concentration fields, mainly because of the constraints in surface temperature imposed by direct assimilation of ocean observations, prescribed or assimilated atmospheric forcing and assimilation of sea ice concentration. However, some spread still exists amongst the reanalyses, due to a variety of factors. In particular, a large spread in sea ice thickness is found within the ensemble of reanalyses, partially caused by the biases inherited from their sea ice model components. Biases are also affected by the assimilation of sea ice concentration and the treatment of sea ice thickness in the data assimilation process. An important outcome of this study is that the spatial distribution of ice volume varies widely between products, with no reanalysis standing out as clearly superior as compared to altimetry estimates. The ice thickness from systems without assimilation of sea ice concentration is not worse than that from systems constrained with sea ice observations. An evaluation of the sea ice velocity fields reveals that ice drifts too fast in most systems. As an ensemble, the ORA-IP reanalyses capture trends in Arctic sea ice area and extent relatively well. However, the ensemble can not be used to get a robust estimate of recent trends in the Arctic sea ice volume. Biases in the reanalyses certainly impact the simulated air–sea fluxes in the polar regions, and questions the suitability of current sea ice reanalyses to initialize seasonal forecasts.