322 resultados para Forecast
Resumo:
The formulation and performance of the Met Office visibility analysis and prediction system are described. The visibility diagnostic within the limited-area Unified Model is a function of humidity and a prognostic aerosol content. The aerosol model includes advection, industrial and general urban sources, plus boundary-layer mixing and removal by rain. The assimilation is a 3-dimensional variational scheme in which the visibility observation operator is a very nonlinear function of humidity, aerosol and temperature. A quality control scheme for visibility data is included. Visibility observations can give rise to humidity increments of significant magnitude compared with the direct impact of humidity observations. We present the results of sensitivity studies which show the contribution of different components of the system to improved skill in visibility forecasts. Visibility assimilation is most important within the first 6-12 hours of the forecast and for visibilities below 1 km, while modelling of aerosol sources and advection is important for slightly higher visibilities (1-5 km) and is still significant at longer forecast times
Resumo:
Drought is a global problem that has far-reaching impacts and especially 47 on vulnerable populations in developing regions. This paper highlights the need for a Global Drought Early Warning System (GDEWS), the elements that constitute its underlying framework (GDEWF) and the recent progress made towards its development. Many countries lack drought monitoring systems, as well as the capacity to respond via appropriate political, institutional and technological frameworks, and these have inhibited the development of integrated drought management plans or early warning systems. The GDEWS will provide a source of drought tools and products via the GDEWF for countries and regions to develop tailored drought early warning systems for their own users. A key goal of a GDEWS is to maximize the lead time for early warning, allowing drought managers and disaster coordinators more time to put mitigation measures in place to reduce the vulnerability to drought. To address this, the GDEWF will take both a top-down approach to provide global real-time drought monitoring and seasonal forecasting, and a bottom-up approach that builds upon existing national and regional systems to provide continental to global coverage. A number of challenges must be overcome, however, before a GDEWS can become a reality, including the lack of in-situ measurement networks and modest seasonal forecast skill in many regions, and the lack of infrastructure to translate data into useable information. A set of international partners, through a series of recent workshops and evolving collaborations, has made progress towards meeting these challenges and developing a global system.
Resumo:
Advances in hardware and software technology enable us to collect, store and distribute large quantities of data on a very large scale. Automatically discovering and extracting hidden knowledge in the form of patterns from these large data volumes is known as data mining. Data mining technology is not only a part of business intelligence, but is also used in many other application areas such as research, marketing and financial analytics. For example medical scientists can use patterns extracted from historic patient data in order to determine if a new patient is likely to respond positively to a particular treatment or not; marketing analysts can use extracted patterns from customer data for future advertisement campaigns; finance experts have an interest in patterns that forecast the development of certain stock market shares for investment recommendations. However, extracting knowledge in the form of patterns from massive data volumes imposes a number of computational challenges in terms of processing time, memory, bandwidth and power consumption. These challenges have led to the development of parallel and distributed data analysis approaches and the utilisation of Grid and Cloud computing. This chapter gives an overview of parallel and distributed computing approaches and how they can be used to scale up data mining to large datasets.
Resumo:
We describe ncWMS, an implementation of the Open Geospatial Consortium’s Web Map Service (WMS) specification for multidimensional gridded environmental data. ncWMS can read data in a large number of common scientific data formats – notably the NetCDF format with the Climate and Forecast conventions – then efficiently generate map imagery in thousands of different coordinate reference systems. It is designed to require minimal configuration from the system administrator and, when used in conjunction with a suitable client tool, provides end users with an interactive means for visualizing data without the need to download large files or interpret complex metadata. It is also used as a “bridging” tool providing interoperability between the environmental science community and users of geographic information systems. ncWMS implements a number of extensions to the WMS standard in order to fulfil some common scientific requirements, including the ability to generate plots representing timeseries and vertical sections. We discuss these extensions and their impact upon present and future interoperability. We discuss the conceptual mapping between the WMS data model and the data models used by gridded data formats, highlighting areas in which the mapping is incomplete or ambiguous. We discuss the architecture of the system and particular technical innovations of note, including the algorithms used for fast data reading and image generation. ncWMS has been widely adopted within the environmental data community and we discuss some of the ways in which the software is integrated within data infrastructures and portals.
Resumo:
At the end of the 20th century, we can look back on a spectacular development of numerical weather prediction, which has, practically uninterrupted, been going on since the middle of the century. High-resolution predictions for more than a week ahead for any part of the globe are now routinely produced and anyone with an Internet connection can access many of these forecasts for anywhere in the world. Extended predictions for several seasons ahead are also being done — the latest El Niño event in 1997/1998 is an example of such a successful prediction. The great achievement is due to a number of factors including the progress in computational technology and the establishment of global observing systems, combined with a systematic research program with an overall strategy towards building comprehensive prediction systems for climate and weather. In this article, I will discuss the different evolutionary steps in this development and the way new scientific ideas have contributed to efficiently explore the computing power and in using observations from new types of observing systems. Weather prediction is not an exact science due to unavoidable errors in initial data and in the models. To quantify the reliability of a forecast is therefore essential and probably more so the longer the forecasts are. Ensemble prediction is thus a new and important concept in weather and climate prediction, which I believe will become a routine aspect of weather prediction in the future. The limit between weather and climate prediction is becoming more and more diffuse and in the final part of this article I will outline the way I think development may proceed in the future.
Resumo:
The ECMWF operational grid point model (with a resolution of 1.875° of latitude and longitude) and its limited area version (with a resolution of !0.47° of latitude and longitude) with boundary values from the global model have been used to study the simulation of the typhoon Tip. The fine-mesh model was capable of simulating the main structural features of the typhoon and predicting a fall in central pressure of 60 mb in 3 days. The structure of the forecast typhoon, with a warm core (maximum potential temperature anomaly 17 K). intense swirling wind (maximum 55 m s-1 at 850 mb) and spiralling precipitation patterns is characteristic of a tropical cyclone. Comparison with the lower resolution forecast shows that the horizontal resolution is a determining factor in predicting not only the structure and intensity but even the movement of these vortices. However, an accurate and refined initial analysis is considered to be a prerequisite for a correct forecast of this phenomenon.
Resumo:
A study of intense hurricane-type vortices in the ECMWF operational model is reported. These vortices develop around day 4 in the forecast and occur in the tropical belt in areas and at times where intense tropical cyclones normally occur. The frequency resembles that observed over most tropical regions with a pronounced maximum in the western North Pacific. The life time of the vortices and their 3-dimensional structure agree in some fundamental way with observations although, because of the resolution, the systems are less intense than the observed ones. The general large-scale conditions for active and inactive cyclone periods are discussed. The model cyclones are sensitive to the sea-surface temperature and do not develop with sea surface temperatures lower than 28–29°C. The dynamical conditions favouring cyclone development are characterized by intense large-scale divergence in the upper troposphere. Cyclogenesis appears to take place when these conditions are found outside the equatorial zone and over oceans where the water is sufficiently warm.
Resumo:
A system for continuous data assimilation is presented and discussed. To simulate the dynamical development a channel version of a balanced barotropic model is used and geopotential (height) data are assimilated into the models computations as data become available. In the first experiment the updating is performed every 24th, 12th and 6th hours with a given network. The stations are distributed at random in 4 groups in order to simulate 4 areas with different density of stations. Optimum interpolation is performed for the difference between the forecast and the valid observations. The RMS-error of the analyses is reduced in time, and the error being smaller the more frequent the updating is performed. The updating every 6th hour yields an error in the analysis less than the RMS-error of the observation. In a second experiment the updating is performed by data from a moving satellite with a side-scan capability of about 15°. If the satellite data are analysed at every time step before they are introduced into the system the error of the analysis is reduced to a value below the RMS-error of the observation already after 24 hours and yields as a whole a better result than updating from a fixed network. If the satellite data are introduced without any modification the error of the analysis is reduced much slower and it takes about 4 days to reach a comparable result to the one where the data have been analysed.
Resumo:
A series of numerical models have been used to investigate the predictability of atmospheric blocking for an episode selected from FGGE Special Observing Period I. Level II-b FGGE data have been used in the experiment. The blocking took place over the North Atlantic region and is a very characteristic example of high winter blocking. It is found that the very high resolution models developed at ECMWF, in a remarkable way manage to predict the blocking event in great detail, even beyond 1 week. Although models with much less resolution manage to predict the blocking phenomenon as such, the actual evolution differs very much from the observed and consequently the practical value is substantially reduced. Wind observations from the geostationary satellites are shown to have a substantial impact on the forecast beyond 5 days, as well as an extension of the integration domain to the whole globe. Quasi-geostrophic baroclinic models and, even more, barotropic models, are totally inadequate to predict blocking except in its initial phase. The prediction experiment illustrates clearly that efforts which have gone into the improvement of numerical prediction models in the last decades have been worth while.
Resumo:
Considerable progress has taken place in numerical weather prediction over the last decade. It has been possible to extend predictive skills in the extra-tropics of the Northern Hemisphere during the winter from less than five days to seven days. Similar improvements, albeit on a lower level, have taken place in the Southern Hemisphere. Another example of improvement in the forecasts is the prediction of intense synoptic phenomena such as cyclogenesis which on the whole is quite successful with the most advanced operational models (Bengtsson (1989), Gadd and Kruze (1988)). A careful examination shows that there are no single causes for the improvements in predictive skill, but instead they are due to several different factors encompassing the forecasting system as a whole (Bengtsson, 1985). In this paper we will focus our attention on the role of data-assimilation and the effect it may have on reducing the initial error and hence improving the forecast. The first part of the paper contains a theoretical discussion on error growth in simple data assimilation systems, following Leith (1983). In the second part we will apply the result on actual forecast data from ECMWF. The potential for further forecast improvements within the framework of the present observing system in the two hemispheres will be discussed.
Resumo:
Numerical forecasts of the atmosphere based on the fundamental dynamical and thermodynamical equations have now been carried for almost 30 years. The very first models which were used were drastic simplifications of the governing equations and permitting only the prediction of the geostrophic wind in the middle of the troposphere based on the conservation of absolute vorticity. Since then we have seen a remarkable development in models predicting the large-scale synoptic flow. Verification carried out at NMC Washington indicates an improvement of about 40% in 24h forecasts for the 500mb geopotential since the end of the 1950’s. The most advanced models of today use the equations of motion in their more original form (i.e. primitive equations) which are better suited to predicting the atmosphere at low latitudes as well as small scale systems. The model which we have developed at the Centre, for instance, will be able to predict weather systems from a scale of 500-1000 km and a vertical extension of a few hundred millibars up to global weather systems extending through the whole depth of the atmosphere. With a grid resolution of 1.5 and 15 vertical levels and covering the whole globe it is possible to describe rather accurately the thermodynamical processes associated with cyclone development. It is further possible to incorporate sub-grid-scale processes such as radiation, exchange of sensible heat, release of latent heat etc. in order to predict the development of new weather systems and the decay of old ones. Later in this introduction I will exemplify this by showing some results of forecasts by the Centre’s model.
Resumo:
As laid out in its convention there are 8 different objectives for ECMWF. One of the major objectives will consist of the preparation, on a regular basis, of the data necessary for the preparation of medium-range weather forecasts. The interpretation of this item is that the Centre will make forecasts once a day for a prediction period of up to 10 days. It is also evident that the Centre should not carry out any real weather forecasting but merely disseminate to the member countries the basic forecasting parameters with an appropriate resolution in space and time. It follows from this that the forecasting system at the Centre must from the operational point of view be functionally integrated with the Weather Services of the Member Countries. The operational interface between ECMWF and the Member Countries must be properly specified in order to get a reasonable flexibility for both systems. The problem of making numerical atmospheric predictions for periods beyond 4-5 days differs substantially from 2-3 days forecasting. From the physical point we can define a medium range forecast as a forecast where the initial disturbances have lost their individual structure. However we are still interested to predict the atmosphere in a similar way as in short range forecasting which means that the model must be able to predict the dissipation and decay of the initial phenomena and the creation of new ones. With this definition, medium range forecasting is indeed very difficult and generally regarded as more difficult than extended forecasts, where we usually only predict time and space mean values. The predictability of atmospheric flow has been extensively studied during the last years in theoretical investigations and by numerical experiments. As has been discussed elsewhere in this publication (see pp 338 and 431) a 10-day forecast is apparently on the fringe of predictability.
Resumo:
Satellite-based Synthetic Aperture Radar (SAR) has proved useful for obtaining information on flood extent, which, when intersected with a Digital Elevation Model (DEM) of the floodplain, provides water level observations that can be assimilated into a hydrodynamic model to decrease forecast uncertainty. With an increasing number of operational satellites with SAR capability, information on the relationship between satellite first visit and revisit times and forecast performance is required to optimise the operational scheduling of satellite imagery. By using an Ensemble Transform Kalman Filter (ETKF) and a synthetic analysis with the 2D hydrodynamic model LISFLOOD-FP based on a real flooding case affecting an urban area (summer 2007,Tewkesbury, Southwest UK), we evaluate the sensitivity of the forecast performance to visit parameters. We emulate a generic hydrologic-hydrodynamic modelling cascade by imposing a bias and spatiotemporal correlations to the inflow error ensemble into the hydrodynamic domain. First, in agreement with previous research, estimation and correction for this bias leads to a clear improvement in keeping the forecast on track. Second, imagery obtained early in the flood is shown to have a large influence on forecast statistics. Revisit interval is most influential for early observations. The results are promising for the future of remote sensing-based water level observations for real-time flood forecasting in complex scenarios.
Resumo:
A necessary condition for a good probabilistic forecast is that the forecast system is shown to be reliable: forecast probabilities should equal observed probabilities verified over a large number of cases. As climate change trends are now emerging from the natural variability, we can apply this concept to climate predictions and compute the reliability of simulated local and regional temperature and precipitation trends (1950–2011) in a recent multi-model ensemble of climate model simulations prepared for the Intergovernmental Panel on Climate Change (IPCC) fifth assessment report (AR5). With only a single verification time, the verification is over the spatial dimension. The local temperature trends appear to be reliable. However, when the global mean climate response is factored out, the ensemble is overconfident: the observed trend is outside the range of modelled trends in many more regions than would be expected by the model estimate of natural variability and model spread. Precipitation trends are overconfident for all trend definitions. This implies that for near-term local climate forecasts the CMIP5 ensemble cannot simply be used as a reliable probabilistic forecast.