454 resultados para Drew
Resumo:
The difluormated analogues of 3-deoxy-D-arabino-heptulosonic acid (DAH) 12, 24 and its enantiomer have been synthesised from D- and L-crythrose via a Reformatsky reaction which gave a mixture of diastereoiosmers in favour of the anti isomer. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Reaction of [M(NCCH3)(4)][PF6] (M = Ag, Cu) with the S2P2Me4 ligand in dichloromethane solution led to substitution of all the nitrile ligands by two molecules of the sulfur ligand, affording the new species [Ag(S2P2Me4)(2)][PF6] (1) and [Cu(S2P2Me4)(2)][PF6] (2). The structures of these complexes were determined by single crystal X-ray diffraction. showing the expected tetrahedral coordination around each metal. Density functional theory (DFT) calculations confirmed the different geometries and energies of the free and coordinated ligand, and provided a very good reproduction of the experimental structures, both for Ag and Cu. The lengths of the S=P bonds are barely affected by coordination, indicating that the pi bond is not important in binding to the metal. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
New Cu(I) and Ag(I) complexes were prepared by reaction of [M(NCCH3)(4)][X] (M = Cu or Ag; X = BF4 or PF6) with the bidentate chalcogenide ligands Ph2P(E)NHP(E)Ph-2 (E = S, S(2)dppa; E = Se, Se(2)dppa), and dpspf (1, 1'-bis(diphenylselenophosphoryl)ferrocene). Copper and silver behaved differently. While three molecules of either S(2)dppa and Se(2)dppa bind to a distorted tetrahedral Cu-4 cluster, with deprotonation of the ligand, 1:2 complexes of the neutral ligands are formed with Ag(l), with a tetrahedral coordination of the metal. The [Cu-4{Ph2P(Se)NP(Se)Ph-2}(3)](+) clusters assemble as dimers, held together by weak Se...Se distances interactions. Another dimer was observed for the [Ag(dpspf)](+) cation, with two short Ag...Se distances. DFT and MP2 calculations indicated the presence of attracting interactions, reflected in positive Mayer indices (MI). The electrochemistry study of this species showed that both oxidation and reduction took place at silver. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The mechanism of the Heck reaction has been studied with regard to transition metal catalysis of the addition of propene and the formation of unsaturated polymers. The reactivity of nickel and palladium complexes with five different bidentate ligands with O,N donor atoms has been investigated by computational methods involving density functional theory. Hence, it is possible to understand the electronic and steric factors affecting the reaction and their relative importance in determining the products formed in regard of their control of the regiochemistry of the products. Our results show that whether the initial addition of propene is trans to O or to N of the bidentate ligand is of crucial importance to the subsequent reactions. Thus when the propene is trans to 0, 1,2-insertion is favoured, but when the propene is trans to N, then 2,1-insertion is favoured. This difference in the preferred insertion pathway can be related to the charge distribution engendered in the propene moiety when the complex is formed. Indeed charge effects are important for catalytic activity but also for regioselectivity. Steric effects are shown to be of lesser importance even when t-butyl is introduced into the bidentate ligand as a substituent. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The structures of intermediates formed in propylene polymerisation using neutral salicyladiminato palladium(II) and nickel(II) complexes as catalysts have been investigated using density functional theory. Calculations show that all low energy intermediates contain agostic interactions either between the metal and a hydrogen from the added propylene forming four- or five-membered chelate rings, or, when a phenyl ring is present, between the metal and an aromatic C-C bond. The agostic interactions with the metal are concomitant with changes in ligand dimensions and electronic properties. In particular when a metal to hydrogen bond is formed, there is a lengthening of the C-H bond. Significant differences are found for the agostic interactions with palladium and nickel in that for Pd there is a clear preference for specific intermediates but for Ni there are several different structures with similar energies which are likely to lead to a greater variety of products on further polymerisation. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The positions of nuclei in orbital representations are discussed. Some misleading representations in the scientific literature are highlighted and more realistic diagrams are presented.
Resumo:
A nickel catalyst was modeled with ligand L-2, [ NH = CH-CH = CH-O](-), which should have potential use as a syndiotactic polyolefin catalyst, and the reaction mechanism was studied by theoretical calculations using the density functional method at the B3LYP/ LANL2MB level. The mechanism involves the formation of the intermediate [(NiLMe)-Me-2](+), in which the metal occuples a T-shaped geometry. - This intermediate has two possible structures with the methyl group trans either to the oxygen or to the nitrogen atom of L-2. The results show that both structures can lead to the desired product via similar reaction paths, A and B. Thus, the polymerization could be considered as taking place either with the alkyl group occupying the position trans to the Ni-O or trans to the Ni-N bond in the catalyst. The polymerization process thus favors the catalysis of syndiotactic polyolefins. The syndiotactic synthesis effects could also be enhanced by variations in the ligand substituents. From energy considerations, we can conclude that it is more favorable for the methyl group to occupy the trans-O position to form a complex than to occupy the trans-N position. From bond length considerations, it is also more favoured for ethene to occupy the trans-O position than to occupy the trans-N position.
Resumo:
Propylene polymerization using salicyladiminato metal catalalysts has been studied using density functional theory at the B3LYP/LANL2DZ level. In particular, the effects on the reaction mechanisms of changing the metal from Pd(II) to Ni(II) have been investigated. While the reaction mechanisms involving the salicyladiminato Ni(II) catalyst have been found to be similar to those established previously for the salicyladiminato Pd(II) catalyst, the nickel catalyst was found to differentiate the trans-O intermediate from the trans-.N intermediate with an energy difference of 46.63 U mol(-1) significantly more than the palladium catalyst for which the energy difference was calculated as 35.82 kJ mol(-1). The energy difference between the trans-O configuration and the trans-N configuration is decreased significantly when combining a molecule of propylene with the catalyst. For the Ni catalyst, the trans-O isomer is more stable than the trans-N isomer to a greater extent than for Pd, so that the insertion of propylene from 20 is relatively less favoured for Ni than for Pd. It is predicted that the mechanism of isomerization from 20 to 2N through a rotational transition state TS2O2N is more appropriate for the Ni catalyst system. The palladium system shows a larger preference for pi-coordination than its nickel counterpart, although the latter possesses a lower reaction barrier. It was found that the occupation of the trans-O position in the asymmetric salicyladiminato catalyst is also more favored by the alkene as it is by the alkyl so that insertion of the alkene may always start from a particular configuration so that specific products are obtained. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A new strategy for the synthesis of sesquiterpenoids of the furanoeremophilane family was developed in which the tricyclic nucleus was assembled in an A + C -> A - C -> A - B - C sequence. The A - C connection was made via coupling of a cyclohexenylmethyl bromide with a stannylfuran under "ligandless" Stille conditions, and the key cyclization which closed ring B was accomplished with complete stereocontrol by intramolecular formylation of a 2-silylfuran in the presence of trimethylsilyl triflate. This route was used to complete the first total syntheses of the furanoeremophilane 6-hydroxyeuryopsin and the eremophilenolides toluccanolide A and toluccanolide C, as well as a formal synthesis of 1,10-epoxy-6-hydroxyeuryopsin.
Resumo:
Two octahedral complexes [Ni(HL1)(2)](ClO4)(2) (1) and [Ni(HL2)(2)](ClO4)(2) (2) and a square planar complex [Ni(HL3)]ClO4 (3) have been prepared, where [HL1 = 3-(2-amino-ethylimino)-butan-2-one oxime, HL2 = 3-(2-amino-propylimino)butan-2-one oxime] and H2L3 = 3-[2-(3-hydroxy-1-methyl-but-2-enylideneamino)-1-methyl-ethylimino]-buta n-2-one oxime. All the complexes have been characterized by elemental analyses, spectral studies and room temperature magnetic moment measurements. The molecular structures of all three compounds were elucidated on the basis of X-ray crystallography: complexes 1 and 2 are seen to be the met isomers. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Two vanadium(V) complexes, [VO(L-1)]acac)] (1) and [VO(L-2)(acac)] (2), where H2L1 = N,N-bis(2-hydroxy-3-5-di-tert-butyl-benzyl)propylamine and H2L2 = 2,2'-selenobis(4,6-di-tert-butylphenol), have been synthesized and characterized by elemental analyses, IR, V-51 NMR, both in the solid and in solution, and cyclic voltammetric studies. Single crystal X-ray studies reveal that in complex 1 the vanadium atom is octahedrally coordinated with an O5N donor environment, where the oxygen atom of the V-V=O moiety and the N atom of the ONO ligand occupy the axial sites while two oxygen atoms (O1 and O2) from the bisphenolate ligand and two oxygen atoms (O3 and O4) from the acac ligand occupy the equatorial plane. A similar bonding pattern has also been encountered for 2 with the exception that a Se atom instead of N is involved in weak bonding to the metal center. Both complexes showed reversible cyclic voltammeric responses and E-1/2 appears at -0.18 and 0.10 V versus NHE for complexes 1 and 2, respectively. The kinetics of oxidation of ascorbic acid by complex 1 were carried out in 50% MeCN-50% HO (v/v) at 25 degrees C. The high formation constant value, Q = 63 +/- 7 M-1, reveals that the reaction proceeds through the rapid formation of a H-bonded intermediate. The low k(2)Q(2)/k(1)Q(1) ratio (13.4) for 1 points out that there is extensive H-bonding between the oxygen atom of the V-V=O group and the OH group of ascorbic acid. (c) 2007 Published by Elsevier Ltd.
Resumo:
A novel trinuclear nickel(II) complex, [Ni-3(L)(2)(H2O)(2)](ClO4)(2), where L is a bridging unsymmetrical tetradentate ligand, involving o-phenylenediamine, diacetyl monoxime and acetylacetone (H2L = 4-[2-(3-hydroxy-1-methyl-but-2-enylideneamino)-phenylimino]-pentan-2- one oxime) has been synthesized and characterized structurally. In the complex, an octahedral Ni( II) centre is held in the middle by two square planar units with the aid of oxime and ketonic bridges. (c) 2007 Elsevier B. V. All rights reserved.
Resumo:
Installing hydroxymethyl and hydroxyethyl substitutions at C-4 through vinylation and hydroboration-oxidation reactions of the C-4 bis-hydroxymethyl derivative of D-glucose based substrate, and inserting heteroatoms thereafter permitted formation of N-, O-, or S-heterocycles leading to [4,5]or [5,5]-spirocycles and a bicyclo[3.3.0]octane product. Some of the spirocycles were converted to spironucleosides under Vorbruggen glycosidation reaction conditions. Similarly, the bicyclic product was elaborated to the corresponding bicyclic nucleoside as well as an unexpected tricyclic nucleoside.
Resumo:
We have described here the self-assembling properties of the synthetic tripeptides Boc-Ala(1)-Aib(2) -Val (3)-OMe 1, BocAla(l)-Aib(2)-Ile(3)-OMe 2 and Boc-Ala(l)-Gly(2)-Val(3)-OMe 3 (Aib=alpha-arnino isobutyric acid, beta-Ala=beta-alanine) which have distorted beta-turn conformations in their respective crystals. These turn-forming tripeptides self-assemble to form supramolecular beta-sheet structures through intermolecular hydrogen bonding and other noncovalent interactions. The scanning electron micrographs of these peptides revealed that these compounds form amyloid-like fibrils, the causative factor for many neurodegenerative diseases including Alzheimer's disease, Huntington's disease and Prion-related encephalopathies. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A self-associating synthetic tripeptide [Boc-Ala(1)-Aib(2)-beta-Ala(3)-OMe (Aib: alpha-amino-isobutyric acid, beta-Ala: beta-alanine)] forms thermoreversible transparent gels in various organic solvents and this offers the first example of a peptide gelator whose molecular self-assembly afforded for gelation has been characterised by single-crystal X-ray diffraction and FT-IR and NMR spectroscopic studies. The crystal structure of an analogous synthetic non-gelator tripeptide [Boc-Ala(1)-Gly(2)-beta-Ala(3)-OMe] is also discussed in light of the self-assembly of the gelator tripeptide. (C) 2003 Elsevier Science Ltd. All rights reserved.