193 resultados para Bayesian maximum entropy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the feasibility of using approximate Bayesian computation (ABC) to calibrate and evaluate complex individual-based models (IBMs). As ABC evolves, various versions are emerging, but here we only explore the most accessible version, rejection-ABC. Rejection-ABC involves running models a large number of times, with parameters drawn randomly from their prior distributions, and then retaining the simulations closest to the observations. Although well-established in some fields, whether ABC will work with ecological IBMs is still uncertain. Rejection-ABC was applied to an existing 14-parameter earthworm energy budget IBM for which the available data consist of body mass growth and cocoon production in four experiments. ABC was able to narrow the posterior distributions of seven parameters, estimating credible intervals for each. ABC’s accepted values produced slightly better fits than literature values do. The accuracy of the analysis was assessed using cross-validation and coverage, currently the best available tests. Of the seven unnarrowed parameters, ABC revealed that three were correlated with other parameters, while the remaining four were found to be not estimable given the data available. It is often desirable to compare models to see whether all component modules are necessary. Here we used ABC model selection to compare the full model with a simplified version which removed the earthworm’s movement and much of the energy budget. We are able to show that inclusion of the energy budget is necessary for a good fit to the data. We show how our methodology can inform future modelling cycles, and briefly discuss how more advanced versions of ABC may be applicable to IBMs. We conclude that ABC has the potential to represent uncertainty in model structure, parameters and predictions, and to embed the often complex process of optimizing an IBM’s structure and parameters within an established statistical framework, thereby making the process more transparent and objective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individual-based models (IBMs) can simulate the actions of individual animals as they interact with one another and the landscape in which they live. When used in spatially-explicit landscapes IBMs can show how populations change over time in response to management actions. For instance, IBMs are being used to design strategies of conservation and of the exploitation of fisheries, and for assessing the effects on populations of major construction projects and of novel agricultural chemicals. In such real world contexts, it becomes especially important to build IBMs in a principled fashion, and to approach calibration and evaluation systematically. We argue that insights from physiological and behavioural ecology offer a recipe for building realistic models, and that Approximate Bayesian Computation (ABC) is a promising technique for the calibration and evaluation of IBMs. IBMs are constructed primarily from knowledge about individuals. In ecological applications the relevant knowledge is found in physiological and behavioural ecology, and we approach these from an evolutionary perspective by taking into account how physiological and behavioural processes contribute to life histories, and how those life histories evolve. Evolutionary life history theory shows that, other things being equal, organisms should grow to sexual maturity as fast as possible, and then reproduce as fast as possible, while minimising per capita death rate. Physiological and behavioural ecology are largely built on these principles together with the laws of conservation of matter and energy. To complete construction of an IBM information is also needed on the effects of competitors, conspecifics and food scarcity; the maximum rates of ingestion, growth and reproduction, and life-history parameters. Using this knowledge about physiological and behavioural processes provides a principled way to build IBMs, but model parameters vary between species and are often difficult to measure. A common solution is to manually compare model outputs with observations from real landscapes and so to obtain parameters which produce acceptable fits of model to data. However, this procedure can be convoluted and lead to over-calibrated and thus inflexible models. Many formal statistical techniques are unsuitable for use with IBMs, but we argue that ABC offers a potential way forward. It can be used to calibrate and compare complex stochastic models and to assess the uncertainty in their predictions. We describe methods used to implement ABC in an accessible way and illustrate them with examples and discussion of recent studies. Although much progress has been made, theoretical issues remain, and some of these are outlined and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give an a posteriori analysis of a semidiscrete discontinuous Galerkin scheme approximating solutions to a model of multiphase elastodynamics, which involves an energy density depending not only on the strain but also the strain gradient. A key component in the analysis is the reduced relative entropy stability framework developed in Giesselmann (2014, SIAM J. Math. Anal., 46, 3518–3539). This framework allows energy-type arguments to be applied to continuous functions. Since we advocate the use of discontinuous Galerkin methods we make use of two families of reconstructions, one set of discrete reconstructions and a set of elliptic reconstructions to apply the reduced relative entropy framework in this setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give an a priori analysis of a semi-discrete discontinuous Galerkin scheme approximating solutions to a model of multiphase elastodynamics which involves an energy density depending not only on the strain but also the strain gradient. A key component in the analysis is the reduced relative entropy stability framework developed in Giesselmann (SIAM J Math Anal 46(5):3518–3539, 2014). The estimate we derive is optimal in the L∞(0,T;dG) norm for the strain and the L2(0,T;dG) norm for the velocity, where dG is an appropriate mesh dependent H1-like space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the creation of a data set describing changes related to the presence of ice sheets, including ice-sheet extent and height, ice-shelf extent, and the distribution and elevation of ice-free land at the Last Glacial Maximum (LGM), which were used in LGM experiments conducted as part of the fifth phase of the Coupled Modelling Intercomparison Project (CMIP5) and the third phase of the Palaeoclimate Modelling Intercomparison Project (PMIP3). The CMIP5/PMIP3 data sets were created from reconstructions made by three different groups, which were all obtained using a model-inversion approach but differ in the assumptions used in the modelling and in the type of data used as constraints. The ice-sheet extent in the Northern Hemisphere (NH) does not vary substantially between the three individual data sources. The difference in the topography of the NH ice sheets is also moderate, and smaller than the differences between these reconstructions (and the resultant composite reconstruction) and ice-sheet reconstructions used in previous generations of PMIP. Only two of the individual reconstructions provide information for Antarctica. The discrepancy between these two reconstructions is larger than the difference for the NH ice sheets, although still less than the difference between the composite reconstruction and previous PMIP ice-sheet reconstructions. Although largely confined to the ice-covered regions, differences between the climate response to the individual LGM reconstructions extend over the North Atlantic Ocean and Northern Hemisphere continents, partly through atmospheric stationary waves. Differences between the climate response to the CMIP5/PMIP3 composite and any individual ice-sheet reconstruction are smaller than those between the CMIP5/PMIP3 composite and the ice sheet used in the last phase of PMIP (PMIP2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The climates of the mid-Holocene (MH), 6,000 years ago, and of the Last Glacial Maximum (LGM), 21,000 years ago, have extensively been simulated, in particular in the framework of the Palaeoclimate Modelling Intercomparion Project. These periods are well documented by paleo-records, which can be used for evaluating model results for climates different from the present one. Here, we present new simulations of the MH and the LGM climates obtained with the IPSL_CM5A model and compare them to our previous results obtained with the IPSL_CM4 model. Compared to IPSL_CM4, IPSL_CM5A includes two new features: the interactive representation of the plant phenology and marine biogeochemistry. But one of the most important differences between these models is the latitudinal resolution and vertical domain of their atmospheric component, which have been improved in IPSL_CM5A and results in a better representation of the mid-latitude jet-streams. The Asian monsoon’s representation is also substantially improved. The global average mean annual temperature simulated for the pre-industrial (PI) period is colder in IPSL_CM5A than in IPSL_CM4 but their climate sensitivity to a CO2 doubling is similar. Here we show that these differences in the simulated PI climate have an impact on the simulated MH and LGM climatic anomalies. The larger cooling response to LGM boundary conditions in IPSL_CM5A appears to be mainly due to differences between the PMIP3 and PMIP2 boundary conditions, as shown by a short wave radiative forcing/feedback analysis based on a simplified perturbation method. It is found that the sensitivity computed from the LGM climate is lower than that computed from 2 × CO2 simulations, confirming previous studies based on different models. For the MH, the Asian monsoon, stronger in the IPSL_CM5A PI simulation, is also more sensitive to the insolation changes. The African monsoon is also further amplified in IPSL_CM5A due to the impact of the interactive phenology. Finally the changes in variability for both models and for MH and LGM are presented taking the example of the El-Niño Southern Oscillation (ENSO), which is very different in the PI simulations. ENSO variability is damped in both model versions at the MH, whereas inconsistent responses are found between the two versions for the LGM. Part 2 of this paper examines whether these differences between IPSL_CM4 and IPSL_CM5A can be distinguished when comparing those results to palaeo-climatic reconstructions and investigates new approaches for model-data comparisons made possible by the inclusion of new components in IPSL_CM5A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combined influences of the westerly phase of the quasi-biennial oscillation (QBO-W) and solar maximum (Smax) conditions on the Northern Hemisphere extratropical winter circulation are investigated using reanalysis data and Center for Climate System Research/National Institute for Environmental Studies chemistry climate model (CCM) simulations. The composite analysis for the reanalysis data indicates strengthened polar vortex in December followed by weakened polar vortex in February–March for QBO-W during Smax (QBO-W/Smax) conditions. This relationship need not be specific to QBO-W/Smax conditions but may just require strengthened vortex in December, which is more likely under QBO-W/Smax. Both the reanalysis data and CCM simulations suggest that dynamical processes of planetary wave propagation and meridional circulation related to QBO-W around polar vortex in December are similar in character to those related to Smax; furthermore, both processes may work in concert to maintain stronger vortex during QBO-W/Smax. In the reanalysis data, the strengthened polar vortex in December is associated with the development of north–south dipole tropospheric anomaly in the Atlantic sector similar to the North Atlantic oscillation (NAO) during December–January. The structure of the north–south dipole anomaly has zonal wavenumber 1 (WN1) component, where the longitude of anomalous ridge overlaps with that of climatological ridge in the North Atlantic in January. This implies amplification of the WN1 wave and results in the enhancement of the upward WN1 propagation from troposphere into stratosphere in January, leading to the weakened polar vortex in February–March. Although WN2 waves do not play a direct role in forcing the stratospheric vortex evolution, their tropospheric response to QBO-W/Smax conditions appears to be related to the maintenance of the NAO-like anomaly in the high-latitude troposphere in January. These results may provide a possible explanation for the mechanisms underlying the seasonal evolution of wintertime polar vortex anomalies during QBO-W/Smax conditions and the role of troposphere in this evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Models for which the likelihood function can be evaluated only up to a parameter-dependent unknown normalizing constant, such as Markov random field models, are used widely in computer science, statistical physics, spatial statistics, and network analysis. However, Bayesian analysis of these models using standard Monte Carlo methods is not possible due to the intractability of their likelihood functions. Several methods that permit exact, or close to exact, simulation from the posterior distribution have recently been developed. However, estimating the evidence and Bayes’ factors for these models remains challenging in general. This paper describes new random weight importance sampling and sequential Monte Carlo methods for estimating BFs that use simulation to circumvent the evaluation of the intractable likelihood, and compares them to existing methods. In some cases we observe an advantage in the use of biased weight estimates. An initial investigation into the theoretical and empirical properties of this class of methods is presented. Some support for the use of biased estimates is presented, but we advocate caution in the use of such estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximate Bayesian computation (ABC) is a popular family of algorithms which perform approximate parameter inference when numerical evaluation of the likelihood function is not possible but data can be simulated from the model. They return a sample of parameter values which produce simulations close to the observed dataset. A standard approach is to reduce the simulated and observed datasets to vectors of summary statistics and accept when the difference between these is below a specified threshold. ABC can also be adapted to perform model choice. In this article, we present a new software package for R, abctools which provides methods for tuning ABC algorithms. This includes recent dimension reduction algorithms to tune the choice of summary statistics, and coverage methods to tune the choice of threshold. We provide several illustrations of these routines on applications taken from the ABC literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reconstructions of salinity are used to diagnose changes in the hydrological cycle and ocean circulation. A widely used method of determining past salinity uses oxygen isotope (δOw) residuals after the extraction of the global ice volume and temperature components. This method relies on a constant relationship between δOw and salinity throughout time. Here we use the isotope-enabled fully coupled General Circulation Model (GCM) HadCM3 to test the application of spatially and time-independent relationships in the reconstruction of past ocean salinity. Simulations of the Late Holocene (LH), Last Glacial Maximum (LGM), and Last Interglacial (LIG) climates are performed and benchmarked against existing compilations of stable oxygen isotopes in carbonates (δOc), which primarily reflect δOw and temperature. We find that HadCM3 produces an accurate representation of the surface ocean δOc distribution for the LH and LGM. Our simulations show considerable variability in spatial and temporal δOw-salinity relationships. Spatial gradients are generally shallower but within ∼50% of the actual simulated LH to LGM and LH to LIG temporal gradients and temporal gradients calculated from multi-decadal variability are generally shallower than both spatial and actual simulated gradients. The largest sources of uncertainty in salinity reconstructions are found to be caused by changes in regional freshwater budgets, ocean circulation, and sea ice regimes. These can cause errors in salinity estimates exceeding 4 psu. Our results suggest that paleosalinity reconstructions in the South Atlantic, Indian and Tropical Pacific Oceans should be most robust, since these regions exhibit relatively constant δOw-salinity relationships across spatial and temporal scales. Largest uncertainties will affect North Atlantic and high latitude paleosalinity reconstructions. Finally, the results show that it is difficult to generate reliable salinity estimates for regions of dynamic oceanography, such as the North Atlantic, without additional constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential impact of the abrupt 8.2 ka cold event on human demography, settlement patterns and culture in Europe and the Near East has emerged as a key theme in current discussion and debate. We test whether this event had an impact on the Mesolithic population of western Scotland, a case study located within the North Atlantic region where the environmental impact of the 8.2 ka event is likely to have been the most severe. By undertaking a Bayesian analysis of the radiocarbon record and using the number of activity events as a proxy for the size of the human population, we find evidence for a dramatic reduction in the Mesolithic population synchronous with the 8.2 ka event. We interpret this as reflecting the demographic collapse of a low density population that lacked the capability to adapt to the rapid onset of new environmental conditions. This impact of the 8.2 ka event in the North Atlantic region lends credence to the possibility of a similar impact on populations in Continental Europe and the Near East.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Last Glacial Maximum (LGM) exhibits different large-scale atmospheric conditions compared to present-day climate due to altered boundary conditions. The regional atmospheric circulation and associated precipitation patterns over Europe are characterized for the first time with a weather typing approach (circulation weather types, CWT) for LGM paleoclimate simulations. The CWT approach is applied to four representative regions across Europe. While the CWTs over Western Europe are prevailing westerly for both present-day and LGM conditions, considerable differences are identified elsewhere: Southern Europe experienced more frequent westerly and cyclonic CWTs under LGM conditions, while Central and Eastern Europe was predominantly affected by southerly and easterly flow patterns. Under LGM conditions, rainfall is enhanced over Western Europe but is reduced over most of Central and Eastern Europe. These differences are explained by changing CWT frequencies and evaporation patterns over the North Atlantic Ocean. The regional differences of the CWTs and precipitation patterns are linked to the North Atlantic storm track, which was stronger over Europe in all considered models during the LGM, explaining the overall increase of the cyclonic CWT. Enhanced evaporation over the North Atlantic leads to higher moisture availability over the ocean. Despite the overall cooling during the LGM, this explains the enhanced precipitation over southwestern Europe, particularly Iberia. This study links large-scale atmospheric dynamics to the regional circulation and associated precipitation patterns and provides an improved regional assessment of the European climate under LGM conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land cover data derived from satellites are commonly used to prescribe inputs to models of the land surface. Since such data inevitably contains errors, quantifying how uncertainties in the data affect a model’s output is important. To do so, a spatial distribution of possible land cover values is required to propagate through the model’s simulation. However, at large scales, such as those required for climate models, such spatial modelling can be difficult. Also, computer models often require land cover proportions at sites larger than the original map scale as inputs, and it is the uncertainty in these proportions that this article discusses. This paper describes a Monte Carlo sampling scheme that generates realisations of land cover proportions from the posterior distribution as implied by a Bayesian analysis that combines spatial information in the land cover map and its associated confusion matrix. The technique is computationally simple and has been applied previously to the Land Cover Map 2000 for the region of England and Wales. This article demonstrates the ability of the technique to scale up to large (global) satellite derived land cover maps and reports its application to the GlobCover 2009 data product. The results show that, in general, the GlobCover data possesses only small biases, with the largest belonging to non–vegetated surfaces. In vegetated surfaces, the most prominent area of uncertainty is Southern Africa, which represents a complex heterogeneous landscape. It is also clear from this study that greater resources need to be devoted to the construction of comprehensive confusion matrices.