175 resultados para extreme hydro meteorological phenomena


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regional climate modelling was used to produce high resolution climate projections for Africa, under a “business as usual scenario”, that were translated into potential health impacts utilizing a heat index that relates apparent temperature to health impacts. The continent is projected to see increases in the number of days when health may be adversely affected by increasing maximum apparent temperatures (AT) due to climate change. Additionally, climate projections indicate that the increases in AT results in a moving of days from the less severe to the more severe Symptom Bands. The analysis of the rate of increasing temperatures assisted in identifying areas, such as the East African highlands, where health may be at increasing risk due to both large increases in the absolute number of hot days, and due to the high rate of increase. The projections described here can be used by health stakeholders in Africa to assist in the development of appropriate public health interventions to mitigate the potential health impacts from climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The El Niño/Southern Oscillation is Earth’s most prominent source of interannual climate variability, alternating irregularly between El Niño and La Niña, and resulting in global disruption of weather patterns, ecosystems, fisheries and agriculture1, 2, 3, 4, 5. The 1998–1999 extreme La Niña event that followed the 1997–1998 extreme El Niño event6 switched extreme El Niño-induced severe droughts to devastating floods in western Pacific countries, and vice versa in the southwestern United States4, 7. During extreme La Niña events, cold sea surface conditions develop in the central Pacific8, 9, creating an enhanced temperature gradient from the Maritime continent to the central Pacific. Recent studies have revealed robust changes in El Niño characteristics in response to simulated future greenhouse warming10, 11, 12, but how La Niña will change remains unclear. Here we present climate modelling evidence, from simulations conducted for the Coupled Model Intercomparison Project phase 5 (ref. 13), for a near doubling in the frequency of future extreme La Niña events, from one in every 23 years to one in every 13 years. This occurs because projected faster mean warming of the Maritime continent than the central Pacific, enhanced upper ocean vertical temperature gradients, and increased frequency of extreme El Niño events are conducive to development of the extreme La Niña events. Approximately 75% of the increase occurs in years following extreme El Niño events, thus projecting more frequent swings between opposite extremes from one year to the next.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El Niño events are a prominent feature of climate variability with global climatic impacts. The 1997/98 episode, often referred to as ‘the climate event of the twentieth century’1, 2, and the 1982/83 extreme El Niño3, featured a pronounced eastward extension of the west Pacific warm pool and development of atmospheric convection, and hence a huge rainfall increase, in the usually cold and dry equatorial eastern Pacific. Such a massive reorganization of atmospheric convection, which we define as an extreme El Niño, severely disrupted global weather patterns, affecting ecosystems4, 5, agriculture6, tropical cyclones, drought, bushfires, floods and other extreme weather events worldwide3, 7, 8, 9. Potential future changes in such extreme El Niño occurrences could have profound socio-economic consequences. Here we present climate modelling evidence for a doubling in the occurrences in the future in response to greenhouse warming. We estimate the change by aggregating results from climate models in the Coupled Model Intercomparison Project phases 3 (CMIP3; ref. 10) and 5 (CMIP5; ref. 11) multi-model databases, and a perturbed physics ensemble12. The increased frequency arises from a projected surface warming over the eastern equatorial Pacific that occurs faster than in the surrounding ocean waters13, 14, facilitating more occurrences of atmospheric convection in the eastern equatorial region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existing urban meteorological networks have an important role to play as test beds for inexpensive and more sustainable measurement techniques that are now becoming possible in our increasingly smart cities. The Birmingham Urban Climate Laboratory (BUCL) is a near-real-time, high-resolution urban meteorological network (UMN) of automatic weather stations and inexpensive, nonstandard air temperature sensors. The network has recently been implemented with an initial focus on monitoring urban heat, infrastructure, and health applications. A number of UMNs exist worldwide; however, BUCL is novel in its density, the low-cost nature of the sensors, and the use of proprietary Wi-Fi networks. This paper provides an overview of the logistical aspects of implementing a UMN test bed at such a density, including selecting appropriate urban sites; testing and calibrating low-cost, nonstandard equipment; implementing strict quality-assurance/quality-control mechanisms (including metadata); and utilizing preexisting Wi-Fi networks to transmit data. Also included are visualizations of data collected by the network, including data from the July 2013 U.K. heatwave as well as highlighting potential applications. The paper is an open invitation to use the facility as a test bed for evaluating models and/or other nonstandard observation techniques such as those generated via crowdsourcing techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GANE proposes that local glutamate-norepinephrine interactions enable “winner-take-more” effects in perception and memory under arousal. A diverse range of commentaries addressed both the nature of this ‘hotspot’ feedback mechanism and its implications in a variety of psychological domains, inspiring exciting avenues for future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The field campaign LOFZY 2005 (LOFoten ZYklonen, engl.: Cyclones) was carried out in the frame of Collaborative Research Centre 512, which deals with low-pressure systems (cyclones) and the climate system of the North Atlantic. Cyclones are of special interest due to their influence on the interaction between atmosphere and ocean. Cyclone activity in the northern part of the Atlantic Ocean is notably high and is of particular importance for the entire Atlantic Ocean. An area of maximum precipitation exists in front of the Norwegian Lofoten islands. One aim of the LOFZY field campaign was to clarify the role cyclones play in the interaction of ocean and atmosphere. In order to obtain a comprehensive dataset of cyclone activity and ocean-atmosphere interaction a field experiment was carried out in the Lofoten region during March and April 2005. Employed platforms were the Irish research vessel RV Celtic Explorer which conducted a meteorological (radiosondes, standard parameters, observations) and an oceanographic (CTD) program. The German research aircraft Falcon accomplished eight flight missions (between 4-21 March) to observe synoptic conditions with high spatial and temporal resolution. In addition 23 autonomous marine buoys were deployed in advance of the campaign in the observed area to measure drift, air-temperature and -pressure and water-temperature. In addition to the published datasets several other measurements were performed during the experiment. Corresonding datasets will be published in the near future and are available on request. Details about all used platforms and sensors and all performed measurements are listed in the fieldreport. The following datasets are available on request: ground data at RV Celtic Explorer

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extent to which a given extreme weather or climate event is attributable to anthropogenic climate change is a question of considerable public interest. From a scientific perspective, the question can be framed in various ways, and the answer depends very much on the framing. One such framing is a risk-based approach, which answers the question probabilistically, in terms of a change in likelihood of a class of event similar to the one in question, and natural variability is treated as noise. A rather different framing is a storyline approach, which examines the role of the various factors contributing to the event as it unfolded, including the anomalous aspects of natural variability, and answers the question deterministically. It is argued that these two apparently irreconcilable approaches can be viewed within a common framework, where the most useful level of conditioning will depend on the question being asked and the uncertainties involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global climate changes during the Cenozoic (65.5–0 Ma) caused major biological range shifts and extinctions. In northern Europe, for example, a pattern of few endemics and the dominance of wide-ranging species is thought to have been determined by the Pleistocene (2.59–0.01 Ma) glaciations. This study, in contrast, reveals an ancient subsurface fauna endemic to Britain and Ireland. Using a Bayesian phylogenetic approach, we found that two species of stygobitic invertebrates (genus Niphargus) have not only survived the entire Pleistocene in refugia but have persisted for at least 19.5 million years. Other Niphargus species form distinct cryptic taxa that diverged from their nearest continental relative between 5.6 and 1.0 Ma. The study also reveals an unusual biogeographical pattern in the Niphargus genus. It originated in north-west Europe approximately 87 Ma and underwent a gradual range expansion. Phylogenetic diversity and species age are highest in north-west Europe, suggesting resilience to extreme climate change and strongly contrasting the patterns seen in surface fauna. However, species diversity is highest in south-east Europe, indicating that once the genus spread to these areas (approximately 25 Ma), geomorphological and climatic conditions enabled much higher diversification. Our study highlights that groundwater ecosystems provide an important contribution to biodiversity and offers insight into the interactions between biological and climatic processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drought events are projected to increase in frequency and magnitude, which may alter the composition of ecological communities. Using a functional community metric that describes abundance, life history traits and conservation status, based upon Grime’s CSR (Competitive-Stress tolerant-Ruderal)¬ scheme, we investigated how British butterfly communities changed during an extreme drought in 1995. Throughout Britain, the total abundance of these insects had a significant tendency to increase, accompanied by substantial changes in community composition, particularly in more northerly, wetter sites. Communities tended to shift away from specialist, vulnerable species, and towards generalist, widespread species and, in the year following, communities had yet to return to equilibrium. Importantly, heterogeneity in surrounding landscapes mediated community responses to the drought event. Contrary to expectation, however, community shifts were more extreme in areas of greater topographic diversity, whilst land-cover diversity buffered community changes and limited declines in vulnerable specialist butterflies.