196 resultados para Warm-moist weather
Resumo:
India is increasingly investing in renewable technology to meet rising energy demands, with hydropower and other renewables comprising one-third of current installed capacity. Installed wind-power is projected to increase 5-fold by 2035 (to nearly 100GW) under the International Energy Agency’s New Policies scenario. However, renewable electricity generation is dependent upon the prevailing meteorology, which is strongly influenced by monsoon variability. Prosperity and widespread electrification are increasing the demand for air conditioning, especially during the warm summer. This study uses multi-decadal observations and meteorological reanalysis data to assess the impact of intraseasonal monsoon variability on the balance of electricity supply from wind-power and temperature-related demand in India. Active monsoon phases are characterised by vigorous convection and heavy rainfall over central India. This results in lower temperatures giving lower cooling energy demand, while strong westerly winds yield high wind-power output. In contrast, monsoon breaks are characterised by suppressed precipitation, with higher temperatures and hence greater demand for cooling, and lower wind-power output across much of India. The opposing relationship between wind-power supply and cooling demand during active phases (low demand, high supply) and breaks (high demand, low supply) suggests that monsoon variability will tend to exacerbate fluctuations in the so-called demand-net-wind (i.e., electrical demand that must be supplied from non-wind sources). This study may have important implications for the design of power systems and for investment decisions in conventional schedulable generation facilities (such as coal and gas) that are used to maintain the supply/demand balance. In particular, if it is assumed (as is common) that the generated wind-power operates as a price-taker (i.e., wind farm operators always wish to sell their power, irrespective of price) then investors in conventional facilities will face additional weather-volatility through the monsoonal impact on the length and frequency of production periods (i.e. their load-duration curves).
Resumo:
Flow in geophysical fluids is commonly summarized by coherent streams, for example conveyor belt flows in extratropical cyclones or jet streaks in the upper troposphere. Typically, parcel trajectories are calculated from the flow field and subjective thresholds are used to distinguish coherent streams of interest. This methodology contribution develops a more objective approach to distinguish coherent airstreams within extratropical cyclones. Agglomerative clustering is applied to trajectories along with a method to identify the optimal number of cluster classes. The methodology is applied to trajectories associated with the low-level jets of a well-studied extratropical cyclone. For computational efficiency, a constraint that trajectories must pass through these jet regions is applied prior to clustering; the partitioning into different airstreams is then performed by the agglomerative clustering. It is demonstrated that the methodology can identify the salient flow structures of cyclones: the warm and cold conveyor belts. A test focusing on the airstreams terminating at the tip of the bent-back front further demonstrates the success of the method in that it can distinguish fine-scale flow structure such as descending sting jet airstreams.
Resumo:
The high computational cost of calculating the radiative heating rates in numerical weather prediction (NWP) and climate models requires that calculations are made infrequently, leading to poor sampling of the fast-changing cloud field and a poor representation of the feedback that would occur. This paper presents two related schemes for improving the temporal sampling of the cloud field. Firstly, the ‘split time-stepping’ scheme takes advantage of the independent nature of the monochromatic calculations of the ‘correlated-k’ method to split the calculation into gaseous absorption terms that are highly dependent on changes in cloud (the optically thin terms) and those that are not (optically thick). The small number of optically thin terms can then be calculated more often to capture changes in the grey absorption and scattering associated with cloud droplets and ice crystals. Secondly, the ‘incremental time-stepping’ scheme uses a simple radiative transfer calculation using only one or two monochromatic calculations representing the optically thin part of the atmospheric spectrum. These are found to be sufficient to represent the heating rate increments caused by changes in the cloud field, which can then be added to the last full calculation of the radiation code. We test these schemes in an operational forecast model configuration and find a significant improvement is achieved, for a small computational cost, over the current scheme employed at the Met Office. The ‘incremental time-stepping’ scheme is recommended for operational use, along with a new scheme to correct the surface fluxes for the change in solar zenith angle between radiation calculations.
Resumo:
The Monte Carlo Independent Column Approximation (McICA) is a flexible method for representing subgrid-scale cloud inhomogeneity in radiative transfer schemes. It does, however, introduce conditional random errors but these have been shown to have little effect on climate simulations, where spatial and temporal scales of interest are large enough for effects of noise to be averaged out. This article considers the effect of McICA noise on a numerical weather prediction (NWP) model, where the time and spatial scales of interest are much closer to those at which the errors manifest themselves; this, as we show, means that noise is more significant. We suggest methods for efficiently reducing the magnitude of McICA noise and test these methods in a global NWP version of the UK Met Office Unified Model (MetUM). The resultant errors are put into context by comparison with errors due to the widely used assumption of maximum-random-overlap of plane-parallel homogeneous cloud. For a simple implementation of the McICA scheme, forecasts of near-surface temperature are found to be worse than those obtained using the plane-parallel, maximum-random-overlap representation of clouds. However, by applying the methods suggested in this article, we can reduce noise enough to give forecasts of near-surface temperature that are an improvement on the plane-parallel maximum-random-overlap forecasts. We conclude that the McICA scheme can be used to improve the representation of clouds in NWP models, with the provision that the associated noise is sufficiently small.
Resumo:
There has been a significant increase in the skill and resolution of numerical weather prediction models (NWPs) in recent decades, extending the time scales of useful weather predictions. The land-surface models (LSMs) of NWPs are often employed in hydrological applications, which raises the question of how hydrologically representative LSMs really are. In this paper, precipitation (P), evaporation (E) and runoff (R) from the European Centre for Medium-Range Weather Forecasts (ECMWF) global models were evaluated against observational products. The forecasts differ substantially from observed data for key hydrological variables. In addition, imbalanced surface water budgets, mostly caused by data assimilation, were found on both global (P-E) and basin scales (P-E-R), with the latter being more important. Modeled surface fluxes should be used with care in hydrological applications and further improvement in LSMs in terms of process descriptions, resolution and estimation of uncertainties is needed to accurately describe the land-surface water budgets.
Resumo:
The incorporation of numerical weather predictions (NWP) into a flood warning system can increase forecast lead times from a few hours to a few days. A single NWP forecast from a single forecast centre, however, is insufficient as it involves considerable non-predictable uncertainties and can lead to a high number of false or missed warnings. Weather forecasts using multiple NWPs from various weather centres implemented on catchment hydrology can provide significantly improved early flood warning. The availability of global ensemble weather prediction systems through the ‘THORPEX Interactive Grand Global Ensemble’ (TIGGE) offers a new opportunity for the development of state-of-the-art early flood forecasting systems. This paper presents a case study using the TIGGE database for flood warning on a meso-scale catchment (4062 km2) located in the Midlands region of England. For the first time, a research attempt is made to set up a coupled atmospheric-hydrologic-hydraulic cascade system driven by the TIGGE ensemble forecasts. A probabilistic discharge and flood inundation forecast is provided as the end product to study the potential benefits of using the TIGGE database. The study shows that precipitation input uncertainties dominate and propagate through the cascade chain. The current NWPs fall short of representing the spatial precipitation variability on such a comparatively small catchment, which indicates need to improve NWPs resolution and/or disaggregating techniques to narrow down the spatial gap between meteorology and hydrology. The spread of discharge forecasts varies from centre to centre, but it is generally large and implies a significant level of uncertainties. Nevertheless, the results show the TIGGE database is a promising tool to forecast flood inundation, comparable with that driven by raingauge observation.
Resumo:
Weather and climate model simulations of the West African Monsoon (WAM) have generally poor representation of the rainfall distribution and monsoon circulation because key processes, such as clouds and convection, are poorly characterized. The vertical distribution of cloud and precipitation during the WAM are evaluated in Met Office Unified Model simulations against CloudSat observations. Simulations were run at 40-km and 12-km horizontal grid length using a convection parameterization scheme and at 12-km, 4-km, and 1.5-km grid length with the convection scheme effectively switched off, to study the impact of model resolution and convection parameterization scheme on the organisation of tropical convection. Radar reflectivity is forward-modelled from the model cloud fields using the CloudSat simulator to present a like-with-like comparison with the CloudSat radar observations. The representation of cloud and precipitation at 12-km horizontal grid length improves dramatically when the convection parameterization is switched off, primarily because of a reduction in daytime (moist) convection. Further improvement is obtained when reducing model grid length to 4 km or 1.5 km, especially in the representation of thin anvil and mid-level cloud, but three issues remain in all model configurations. Firstly, all simulations underestimate the fraction of anvils with cloud top height above 12 km, which can be attributed to too low ice water contents in the model compared to satellite retrievals. Secondly, the model consistently detrains mid-level cloud too close to the freezing level, compared to higher altitudes in CloudSat observations. Finally, there is too much low-level cloud cover in all simulations and this bias was not improved when adjusting the rainfall parameters in the microphysics scheme. To improve model simulations of the WAM, more detailed and in-situ observations of the dynamics and microphysics targeting these non-precipitating cloud types are required.
Resumo:
Weather is frequently used in music to frame events and emotions, yet quantitative analyses are rare. From a collated base set of 759 weather-related songs, 419 were analysed based on listings from a karaoke database. This article analyses the 20 weather types described, frequency of occurrence, genre, keys, mimicry, lyrics and songwriters. Vocals were the principal means of communicating weather: sunshine was the most common, followed by rain, with weather depictions linked to the emotions of the song. Bob Dylan, John Lennon and Paul McCartney wrote the most weather-related songs, partly following their experiences at the time of writing.
Resumo:
Recent work has shown that both the amplitude of upper-level Rossby waves and the tropopause sharpness decrease with forecast lead time for several days in some operational weather forecast systems. In this contribution, the evolution of error growth in a case study of this forecast error type is diagnosed through analysis of operational forecasts and hindcast simulations. Potential vorticity (PV) on the 320-K isentropic surface is used to diagnose Rossby waves. The Rossby-wave forecast error in the operational ECMWF high-resolution forecast is shown to be associated with errors in the forecast of a warm conveyor belt (WCB) through trajectory analysis and an error metric for WCB outflows. The WCB forecast error is characterised by an overestimation of WCB amplitude, a location of the WCB outflow regions that is too far to the southeast, and a resulting underestimation of the magnitude of the negative PV anomaly in the outflow. Essentially the same forecast error development also occurred in all members of the ECMWF Ensemble Prediction System and the Met Office MOGREPS-15 suggesting that in this case model error made an important contribution to the development of forecast error in addition to initial condition error. Exploiting this forecast error robustness, a comparison was performed between the realised flow evolution, proxied by a sequence of short-range simulations, and a contemporaneous forecast. Both the proxy to the realised flow and the contemporaneous forecast a were produced with the Met Office Unified Model enhanced with tracers of diabatic processes modifying potential temperature and PV. Clear differences were found in the way potential temperature and PV are modified in the WCB between proxy and forecast. These results demonstrate that differences in potential temperature and PV modification in the WCB can be responsible for forecast errors in Rossby waves.
Resumo:
Methods to explicitly represent uncertainties in weather and climate models have been developed and refined over the past decade, and have reduced biases and improved forecast skill when implemented in the atmospheric component of models. These methods have not yet been applied to the land surface component of models. Since the land surface is strongly coupled to the atmospheric state at certain times and in certain places (such as the European summer of 2003), improvements in the representation of land surface uncertainty may potentially lead to improvements in atmospheric forecasts for such events. Here we analyse seasonal retrospective forecasts for 1981–2012 performed with the European Centre for Medium-Range Weather Forecasts’ (ECMWF) coupled ensemble forecast model. We consider two methods of incorporating uncertainty into the land surface model (H-TESSEL): stochastic perturbation of tendencies, and static perturbation of key soil parameters. We find that the perturbed parameter approach considerably improves the forecast of extreme air temperature for summer 2003, through better representation of negative soil moisture anomalies and upward sensible heat flux. Averaged across all the reforecasts the perturbed parameter experiment shows relatively little impact on the mean bias, suggesting perturbations of at least this magnitude can be applied to the land surface without any degradation of model climate. There is also little impact on skill averaged across all reforecasts and some evidence of overdispersion for soil moisture. The stochastic tendency experiments show a large overdispersion for the soil temperature fields, indicating that the perturbation here is too strong. There is also some indication that the forecast of the 2003 warm event is improved for the stochastic experiments, however the improvement is not as large as observed for the perturbed parameter experiment.
Resumo:
Current climate model projections do not exhibit a large change in the intensity of extratropical cyclones. However, there are concerns that current models represent moist processes poorly, and this provides motivation for investigating observational evidence for how cyclones behave in warmer climates. In the North Atlantic in particular, recent decades provide a clear contrast between warm and cold climates due to Atlantic Multidecadal Variability. In this paper we investigate these periods as analogues which may provide a guide to future cyclone behavior. While temperature and moisture rise in recent warm periods as in the projections, differences in energetics and temperature gradients imply that these periods are only partial analogues. The main result from current reanalyses is that while increased cyclone-associated precipitation is seen in the recent warm periods, there is no robust evidence of an increase in cyclone intensity by other measures, such as maximum wind speed or vorticity. A set of low- and high-resolution model simulations are also studied, suggesting that changes in cyclone intensity may be different in higher-resolution reanalyses.
Resumo:
The Jülich Observatory for Cloud Evolution (JOYCE), located at Forschungszentrum Jülich in the most western part of Germany, is a recently established platform for cloud research. The main objective of JOYCE is to provide observations, which improve our understanding of the cloudy boundary layer in a midlatitude environment. Continuous and temporally highly resolved measurements that are specifically suited to characterize the diurnal cycle of water vapor, stability, and turbulence in the lower troposphere are performed with a special focus on atmosphere–surface interaction. In addition, instruments are set up to measure the micro- and macrophysical properties of clouds in detail and how they interact with different boundary layer processes and the large-scale synoptic situation. For this, JOYCE is equipped with an array of state-of-the-art active and passive remote sensing and in situ instruments, which are briefly described in this scientific overview. As an example, a 24-h time series of the evolution of a typical cumulus cloud-topped boundary layer is analyzed with respect to stability, turbulence, and cloud properties. Additionally, we present longer-term statistics, which can be used to elucidate the diurnal cycle of water vapor, drizzle formation through autoconversion, and warm versus cold rain precipitation formation. Both case studies and long-term observations are important for improving the representation of clouds in climate and numerical weather prediction models.
Resumo:
Objectives In this study a prototype of a new health forecasting alert system is developed, which is aligned to the approach used in the Met Office’s (MO) National Severe Weather Warning Service (NSWWS). This is in order to improve information available to responders in the health and social care system by linking temperatures more directly to risks of mortality, and developing a system more coherent with other weather alerts. The prototype is compared to the current system in the Cold Weather and Heatwave plans via a case-study approach to verify its potential advantages and shortcomings. Method The prototype health forecasting alert system introduces an “impact vs likelihood matrix” for the health impacts of hot and cold temperatures which is similar to those used operationally for other weather hazards as part of the NSWWS. The impact axis of this matrix is based on existing epidemiological evidence, which shows an increasing relative risk of death at extremes of outdoor temperature beyond a threshold which can be identified epidemiologically. The likelihood axis is based on a probability measure associated with the temperature forecast. The new method is tested for two case studies (one during summer 2013, one during winter 2013), and compared to the performance of the current alert system. Conclusions The prototype shows some clear improvements over the current alert system. It allows for a much greater degree of flexibility, provides more detailed regional information about the health risks associated with periods of extreme temperatures, and is more coherent with other weather alerts which may make it easier for front line responders to use. It will require validation and engagement with stakeholders before it can be considered for use.
Resumo:
4-Dimensional Variational Data Assimilation (4DVAR) assimilates observations through the minimisation of a least-squares objective function, which is constrained by the model flow. We refer to 4DVAR as strong-constraint 4DVAR (sc4DVAR) in this thesis as it assumes the model is perfect. Relaxing this assumption gives rise to weak-constraint 4DVAR (wc4DVAR), leading to a different minimisation problem with more degrees of freedom. We consider two wc4DVAR formulations in this thesis, the model error formulation and state estimation formulation. The 4DVAR objective function is traditionally solved using gradient-based iterative methods. The principle method used in Numerical Weather Prediction today is the Gauss-Newton approach. This method introduces a linearised `inner-loop' objective function, which upon convergence, updates the solution of the non-linear `outer-loop' objective function. This requires many evaluations of the objective function and its gradient, which emphasises the importance of the Hessian. The eigenvalues and eigenvectors of the Hessian provide insight into the degree of convexity of the objective function, while also indicating the difficulty one may encounter while iterative solving 4DVAR. The condition number of the Hessian is an appropriate measure for the sensitivity of the problem to input data. The condition number can also indicate the rate of convergence and solution accuracy of the minimisation algorithm. This thesis investigates the sensitivity of the solution process minimising both wc4DVAR objective functions to the internal assimilation parameters composing the problem. We gain insight into these sensitivities by bounding the condition number of the Hessians of both objective functions. We also precondition the model error objective function and show improved convergence. We show that both formulations' sensitivities are related to error variance balance, assimilation window length and correlation length-scales using the bounds. We further demonstrate this through numerical experiments on the condition number and data assimilation experiments using linear and non-linear chaotic toy models.
Resumo:
There are some long-established biases in atmospheric models that originate from the representation of tropical convection. Previously, it has been difficult to separate cause and effect because errors are often the result of a number of interacting biases. Recently, researchers have gained the ability to run multiyear global climate model simulations with grid spacings small enough to switch the convective parameterization off, which permits the convection to develop explicitly. There are clear improvements to the initiation of convective storms and the diurnal cycle of rainfall in the convection-permitting simulations, which enables a new process-study approach to model bias identification. In this study, multiyear global atmosphere-only climate simulations with and without convective parameterization are undertaken with the Met Office Unified Model and are analyzed over the Maritime Continent region, where convergence from sea-breeze circulations is key for convection initiation. The analysis shows that, although the simulation with parameterized convection is able to reproduce the key rain-forming sea-breeze circulation, the parameterization is not able to respond realistically to the circulation. A feedback of errors also occurs: the convective parameterization causes rain to fall in the early morning, which cools and wets the boundary layer, reducing the land–sea temperature contrast and weakening the sea breeze. This is, however, an effect of the convective bias, rather than a cause of it. Improvements to how and when convection schemes trigger convection will improve both the timing and location of tropical rainfall and representation of sea-breeze circulations.