172 resultados para Perennial Forage Grasses
Resumo:
The effect of different stages of sewage sludge treatment on phosphorus (P) dynamics in amended soils was determined using samples of undigested liquid (UL), anaerobically digested liquid (AD) and dewatered anaerobically digested (DC) sludge. Sludges were taken from three points in the same treatment stream and applied to a sandy loam soil in field-based mesocosms at 4, 8 and 16t ha−1 dry solids. Mesocosms were sown with perennial ryegrass (Lolium perenne cv. Melle), and the sward was harvested after 35 and 70 days to determine yield and foliar P concentration. Soils were also sampled during this period to measure P transformations and the activities of acid phosphomonoesterase and phosphodiesterase. Data show that the AD amended soils had the greatest plant-available and foliar P content up to the second harvest, but the UL amended soils had the greatest enzyme activity. Characterisation of control and 16t ha−1 soils and sludge using solution 31P nuclear magnetic resonance (NMR) spectroscopy after NaOH–EDTA extraction revealed that P was predominantly in the inorganic pool in all three sludge samples, with the highest proportion (of the total extracted P) as inorganic P in the anaerobically digested liquid sludge. After sludge incorporation, P was immobilised to organic species. The majority of organic P was in monoester-P forms, while the remainder of organic P (diester P and phosphonate P) was more susceptible to transformations through time and showed variation with sludge type. These results show that application of sewage sludge at rates as low as 4t ha−1 can have a significant nutritional benefit to ryegrass over an initial 35-day growth and subsequent 35-day re-growth periods. Differences in P transformation, and hence nutritional benefit, between sludge types were evident throughout the experiment. Thus, differences in sludge treatment process alter the edaphic mineralisation characteristics of biosolids derived from the same source material.
Resumo:
A free air CO2 enrichment (FACE) facility has recently been constructed in a tropical savanna in north-eastern Queensland, Australia. The system has a novel and cost-effective design and uses an industrial source of pure CO2 piped directly to the site. We describe the design details of this facility and assess the likely contribution it will make towards advancing our understanding of the direct impacts of rising atmospheric CO2 on savannas. These include addressing uncertainties about future shifts in the tree–grass balance and associated changes in carbon stocks, responses of C4 grasses in dry tropical environments, potential sequestration of soil carbon, and the modifications of CO2 responses by moisture and nutrient interactions. Tropical regions have been poorly represented in climate change research, and the work at the OzFACE facility will complement existing and ongoing FACE studies at temperate latitudes.
Resumo:
Grass lawns are a ubiquitous feature of urban green-space throughout much of the temperate world. Species poor and intensively managed, lawns are ecologically impoverished, however environmentally aware lawn owners are reluctant to implement alternatives due to aesthetic concerns. Developing an alternative lawn format which is both biodiversity friendly and aesthetically pleasing is an imperative for urban greening. We suggest that such an alternative can be provided by replacing the grass lawn by a forb-based mix. To advance this, we tested the floral performance of three groups of clonal perennial forbs (native, non-native and mixed), each maintained using standard lawn management mowing regimes. Our findings show that both the frequency of mowing and the height at which mowing is applied influence floral performance and lawn aesthetics. Species origin was found to influence floral productivity, floral visibility and floral variety within grass-free lawns, with native species providing the greatest floral performance. The behaviour and management of grass lawns was not found to be a suitable analogue for the management of grass-free lawns and grass-free lawns are sufficiently different from grass lawns to require an entirely original management approach. We suggest that the grass-free lawn can provide an aesthetically and environmentally relevant replacement for the ubiquitous and ecologically-poor grass lawn.
Resumo:
Proanthocyanidins (PAs) in sainfoin (Onobrychis viciifolia Scop.) are of interest to ameliorate the sustainability of livestock production. However, sainfoin forage yield and PA concentrations, as well as their composition, require optimization. Individual plants of 27 sainfoin accessions from four continents were analyzed with LC-ESI-QqQ-MS/MS for PA concentrations and simple phenolic compounds. Large variability existed in PA concentrations (23.0–47.5 mg g–1 leaf dry matter (DM)), share of prodelphinidins (79–96%), and mean degree of polymerization (11–14) among, but also within, accessions. PAs were mainly located in leaves (26.8 mg g–1 DM), whereas stems had less PAs (7.8 mg g–1 DM). Overall, high-yielding plants had lower PA leaf concentrations (R2 = 0.16, P < 0.001) and fewer leaves (R2 = 0.66, P < 0.001). However, the results show that these two trade-offs between yield and bioactive PAs can be overcome.
Resumo:
Demand for organic milk is partially driven by consumer perceptions that it is more nutritious. However, there is still considerable uncertainty over whether the use of organic production standards affects milk quality. Here we report results of meta-analyses based on 170 published studies comparing the nutrient content of organic and conventional bovine milk. There were no significant differences in total SFA and MUFA concentrations between organic and conventional milk. However, concentrations of total PUFA and n-3 PUFA were significantly higher in organic milk, by an estimated 7 (95 % CI −1, 15) % and 56 (95 % CI 38, 74) %, respectively. Concentrations of α-linolenic acid (ALA), very long-chain n-3 fatty acids (EPA+DPA+DHA) and conjugated linoleic acid were also significantly higher in organic milk, by an 69 (95 % CI 53, 84) %, 57 (95 % CI 27, 87) % and 41 (95 % CI 14, 68) %, respectively. As there were no significant differences in total n-6 PUFA and linoleic acid (LA) concentrations, the n-6:n-3 and LA:ALA ratios were lower in organic milk, by an estimated 71 (95 % CI −122, −20) % and 93 (95 % CI −116, −70) %. It is concluded that organic bovine milk has a more desirable fatty acid composition than conventional milk. Meta-analyses also showed that organic milk has significantly higher α-tocopherol and Fe, but lower I and Se concentrations. Redundancy analysis of data from a large cross-European milk quality survey indicates that the higher grazing/conserved forage intakes in organic systems were the main reason for milk composition differences.
Resumo:
Demand for organic meat is partially driven by consumer perceptions that organic foods are more nutritious than non-organic foods. However, there have been no systematic reviews comparing specifically the nutrient content of organic and conventionally produced meat. In this study, we report results of a meta-analysis based on sixty-seven published studies comparing the composition of organic and non-organic meat products. For many nutritionally relevant compounds (e.g. minerals, antioxidants and most individual fatty acids (FA)), the evidence base was too weak for meaningful meta-analyses. However, significant differences in FA profiles were detected when data from all livestock species were pooled. Concentrations of SFA and MUFA were similar or slightly lower, respectively, in organic compared with conventional meat. Larger differences were detected for total PUFA and n-3 PUFA, which were an estimated 23 (95 % CI 11, 35) % and 47 (95 % CI 10, 84) % higher in organic meat, respectively. However, for these and many other composition parameters, for which meta-analyses found significant differences, heterogeneity was high, and this could be explained by differences between animal species/meat types. Evidence from controlled experimental studies indicates that the high grazing/forage-based diets prescribed under organic farming standards may be the main reason for differences in FA profiles. Further studies are required to enable meta-analyses for a wider range of parameters (e.g. antioxidant, vitamin and mineral concentrations) and to improve both precision and consistency of results for FA profiles for all species. Potential impacts of composition differences on human health are discussed.
Resumo:
Horticulture may be defined as the intensive cultivation and harvesting of plants for financial, environmental and social profit. Evidence for the occurrence of climate change more generally and reasons why this process is happening with such rapidity are discussed. These changes are then considered in terms of the effects which might alter the options for worldwide intensive horticultural cultivation of plants and its interactions with other organisms. Potentially changing climates will have considerable impact upon horticultural processes and productivity across the globe . Climate change will alter the growth patterns and capabilities for flowering and fruiting of many perennial and annual horticultural plants. In some regions perennial fruit crops are likely to experience substantial difficulties because of altered seasonal conditions affecting dormancy, acclimation and subsequent flowering and fruiting. Elsewhere these crops may benefit from the effects of climate change as a result of reduced cold damage and increased length of the growing season. There will be considerable effects for aerial and edaphic microbes invertebrate and vertebrate animals which have benign and pathogenic interactions with horticultural plants. Microbial activity and as a consequence soil fertility may alter. New pests and pathogens may become prevalent and damaging in areas where the climate previously excluded their activity. Vital resources such as water and nutrients may become scarce in some regions reducing opportunities for growing horticultural crops. Wind and windiness are significant factors governing the success of horticultural plants and the scale of their impacts may change as climate alters. Damaging winds could limit crop growing in areas where previously it flourished. Forms of macro- and micro-landscaping will change as the spectrum of plants which can be cultivated alters and the availability of resources and their cost changes driven by scarcities brought about by climate change. The horticultural economy of India as it may be affected by climate change is described as an individual example in a detailed study.