203 resultados para Milk producer
Resumo:
Functional advantages of probiotics combined with interesting composition of oat were considered as an alternative to dairy products. In this study, fermentation of oat milk with Lactobacillus reuteri and Streptococcus thermophilus was analysed to develop a new probiotic product. Central composite design with response surface methodology was used to analyse the effect of different factors (glucose, fructose, inulin and starters) on the probiotic population in the product. Optimised formulation was characterised throughout storage time at 4 ℃ in terms of pH, acidity, β-glucan and oligosaccharides contents, colour and rheological behaviour. All formulations studied were adequate to produce fermented foods and minimum dose of each factor was considered as optimum. The selected formulation allowed starters survival above 107/cfu ml to be considered as a functional food and was maintained during the 28 days controlled. β-glucans remained in the final product with a positive effect on viscosity. Therefore, a new probiotic non-dairy milk was successfully developed in which high probiotic survivals were assured throughout the typical yoghurt-like shelf life.
Resumo:
This study investigated the effect of, and interactions between, contrasting crossbreed genetics (US Brown Swiss [BS] × Improved Braunvieh [BV] × Original Braunvieh [OB]) and feeding regimes (especially grazing intake and pasture type) on milk fatty acid (FA) profiles. Concentrations of total polyunsaturated FAs, total omega-3 FAs and trans palmitoleic, vaccenic, α-linolenic, eicosapentaenoic and docosapentaenoic acids were higher in cows with a low proportion of BS genetics. Highest concentrations of the nutritionally desirable FAs, trans palmitoleic, vaccenic and eicosapentaenoic acids were found for cows with a low proportion of BS genetics (0-24% and/or 25-49%) on high grazing intake (75-100% of dry matter intake) diets. Multivariate analysis indicated that the proportion of OB genetics is a positive driver for nutritionally desirable monounsaturated and polyunsaturated FAs while BS genetics proportion was positive driver for total and undesirable individual saturated FAs. Significant genetics × feeding regime interactions were also detected for a range of FAs.
Resumo:
Many studies show concentrations of nutritionally desirable fatty acids in bovine milk are lower when cows have no access to grazing, leading to seasonal fluctuations in milk quality if cows are housed for part of the year. This study investigated the potential to improve the fatty acid profiles of bovine milk by oilseed supplementation (rolled linseed and rapeseed) during a period of indoor feeding in both organic and conventional production systems. Both linseed and rapeseed increased the concentrations of total monounsaturated fatty acids, vaccenic acid, oleic acid and rumenic acid in milk, but decreased the concentration of the total and certain individual saturated fatty acids. Linseed resulted in greater changes than rapeseed, and also significantly increased the concentrations of α-linolenic acid, total polyunsaturated fatty acids and total omega-3 fatty acids. The response to oilseed supplementation, with respect to increasing concentrations of vaccenic acid and omega-3 fatty acids, appeared more efficient for organic compared with conventional diets.
Resumo:
This study investigates the quality of retail milk labelled as Jersey & Guernsey (JG) when compared with milk without breed specifications (NS) and repeatability of differences over seasons and years. 16 different brands of milk (4 Jersey & Guernsey, 12 non specified breed) were sampled over 2 years on 4 occasions. JG milk was associated with both favourable traits for human health, such as the higher total protein, total casein, α-casein, β-casein, κ-casein and α-tocopherol contents, and unfavourable traits, such as the higher concentrations of saturated fat, C12:0, C14:0 and lower concentrations of monounsaturated fatty acids. In summer, JG milk had a higher omega-3:omega-6 ratio than had NS milk. Also, the relative increase in omega-3 fatty acids and α-tocopherol, from winter to summer, was greater in JG milk. The latter characteristic could be of use in breeding schemes and farming systems producing niche dairy products. Seasonality had a more marked impact on the fatty acid composition of JG milk than had NS milk, while the opposite was found for protein composition. Potential implication for the findings in human health, producers, industry and consumers are considered.
Resumo:
There is increasing concern that the intensification of dairy production reduces the concentrations of nutritionally desirable compounds in milk. This study therefore compared important quality parameters (protein and fatty acid profiles; α-tocopherol and carotenoid concentrations) in milk from four dairy systems with contrasting production intensities (in terms of feeding regimens and milking systems). The concentrations of several nutritionally desirable compounds (β-lactoglobulin, omega-3 fatty acids, omega-3/omega-6 ratio, conjugated linoleic acid c9t11, and/or carotenoids) decreased with increasing feeding intensity (organic outdoor ≥ conventional outdoor ≥ conventional indoors). Milking system intensification (use of robotic milking parlors) had a more limited effect on milk composition, but increased mastitis incidence. Multivariate analyses indicated that differences in milk quality were mainly linked to contrasting feeding regimens and that milking system and breed choice also contributed to differences in milk composition between production systems.
Resumo:
This study of UK retail milk identified highly significant variations in fat composition. The survey, conducted over 2 yr replicating summer and winter, sampled 22 brands, 10 of which indicated organic production systems. Results corroborate earlier farm-based findings considering fat composition of milk produced under conventional and organic management. Organic milk had higher concentrations of beneficial fatty acids (FA) than conventional milk, including total polyunsaturated fatty acids (PUFA; 39.4 vs. 31.8 g/kg of total FA), conjugated linoleic acid cis-9,trans-11 (CLA9; 7.4 v 5.6 g/kg of FA), and α-linolenic acid (α-LN; 6.9 vs. 4.4 g/kg of FA). As expected, purchase season had a strong effect on fat composition: compared with milk purchased in winter, summer milk had a lower concentration of saturated fatty acids (682 vs. 725 g/kg of FA) and higher concentrations of PUFA (37.6 vs. 32.8 g/kg of FA), CLA9 (8.1 vs. 4.7 g/kg of FA), and α-LN (6.5 vs. 4.6 g/kg of FA). Differences identified between sampling years were more surprising: compared with that in yr 2, milk purchased in year 1 had higher concentrations of PUFA (37.5 vs. 32.9 g/kg of FA), α-LN (6.0 vs. 5.1 g/kg of FA), and linoleic acid (19.9 vs. 17.5 g/kg of FA) and lower concentrations of C16:0 and C14:0 (332 vs. 357 and 110 vs. 118 g/kg of FA, respectively). Strong interactions were identified between management and season as well as between season and year of the study. As in the earlier farm studies, differences in fat composition between systems were greater for summer compared with winter milk. Large between-year differences may be due to changes in weather influencing milk composition through forage availability, quality, and intake. If climate change predictions materialize, both forage and dairy management may have to adapt to maintain current milk quality. Considerable variation existed in milk fat composition between brands.
Resumo:
This work aimed to test if milk preserved with bronopol can be reliably used for fatty acid determination. Dairy production and milk quality are often monitored regularly to assess performance and contribute to selection indices. With evidence that fat composition can be influenced by selective breeding, there might be an interest in using samples collected in routine testing to evaluate individual cow fatty acid profiles, contributing to breeding indices. However, most recording services use a preservative such as bronopol and there is no published record if this influences subsequent fatty acid analysis. This study used milk from an oil seed supplementation trial, generating a wide range of milk fatty acid profiles, to test if the concentration of 31 individual fatty acids determined by GC were influenced by bronopol. Provided preserved samples are subsequently frozen, milk treated with bronopol can reliably be used to evaluate fatty acid composition in most cases; however bronopol might influence a few long-chain fatty acids present in relatively low concentrations. This is one small step towards simplifying milk compositional analysis but it could ultimately streamline the inclusion of milk fat quality into breeding indices, either with a view to 'healthier' milk or potentially reducing methane output and the environmental impact of dairy production.
The effects of dairy management and processing on quality characteristics of milk and dairy products
Resumo:
Studies within the QLIF project reviewed in this article suggest that organic or low-input management is more likely to result in milk with fatty acid profiles that are higher in α-linolenic acid and/or beneficial isomers of conjugated linoleic acid and antioxidants with up to a 2.5-fold increase in some cases, relative to milk from conventional production. These advantages are preserved during processing, resulting in elevated contents or concentrations of these constituents in processed dairy products of organic or low input origin. Much of the literature suggests that these benefits are very likely to be a result of a greater reliance on forages in the dairy diets (especially grazed grass). Since the adoption of alternative breeds or crosses is often an integral part sustaining these low-input systems, it is not possible to rule out an interaction with genotype in these monitored herds. The results suggest that milk fat composition with respect to human health can be optimized by exploiting grazing in the diet of dairy cows. However, in many European regions this may not be possible due to extremes in temperature, soil moisture levels or both. In such cases milk quality can be maintained by the inclusion of oil seeds in the dairy diets.