251 resultados para Lucey, Helen
Resumo:
During the winter of 2013/14, much of the UK experienced repeated intense rainfall events and flooding. This had a considerable impact on property and transport infrastructure. A key question is whether the burning of fossil fuels is changing the frequency of extremes, and if so to what extent. We assess the scale of the winter flooding before reviewing a broad range of Earth system drivers affecting UK rainfall. Some drivers can be potentially disregarded for these specific storms whereas others are likely to have increased their risk of occurrence. We discuss the requirements of hydrological models to transform rainfall into river flows and flooding. To determine any general changing flood risk, we argue that accurate modelling needs to capture evolving understanding of UK rainfall interactions with a broad set of factors. This includes changes to multiscale atmospheric, oceanic, solar and sea-ice features, and land-use and demographics. Ensembles of such model simulations may be needed to build probability distributions of extremes for both pre-industrial and contemporary concentration levels of atmospheric greenhouse gases.
Resumo:
The question of where to locate teaching about the relationships between science and religion has produced a long-running debate. Currently, Science and Religious Education (RE) are statutory subjects in England and are taught in secondary schools by different teachers. This paper reports on an interview study in which 16 teachers gave their perceptions of their roles and responsibilities when teaching topics that bridge science and religion and the extent to which they collaborated with teachers in the other subject area. We found that in this sample, teachers reported very little collaboration between the curriculum areas. Although the science curriculum makes no mention of religion, all the science teachers said that their approaches to such topics were affected by their recognition that some pupils hold religious beliefs. All the RE teachers reported struggling to ensure students know of a range of views about how science and religion relate. The paper concludes with a discussion about implications for curriculum design and teacher training.
Resumo:
The modulation of air–sea heat fluxes by geostrophic eddies due to the stirring of temperature at the sea surface is discussed and quantified. It is argued that the damping of eddy temperature variance by such air–sea fluxes enhances the dissipation of surface temperature fields. Depending on the time scale of damping relative to that of the eddying motions, surface eddy diffusivities can be significantly enhanced over interior values. The issues are explored and quantified in a controlled setting by driving a tracer field, a proxy for sea surface temperature, with surface altimetric observations in the Antarctic Circumpolar Current (ACC) of the Southern Ocean. A new, tracer-based diagnostic of eddy diffusivity is introduced, which is related to the Nakamura effective diffusivity. Using this, the mixed layer lateral eddy diffusivities associated with (i) eddy stirring and small-scale mixing and (ii) surface damping by air–sea interaction is quantified. In the ACC, a diffusivity associated with surface damping of a comparable magnitude to that associated with eddy stirring (;500 m2 s21) is found. In frontal regions prevalent in the ACC, an augmentation of surface lateral eddy diffusivities of this magnitude is equivalent to an air–sea flux of 100 W m22 acting over a mixed layer depth of 100 m, a very significant effect. Finally, the implications for other tracer fields such as salinity, dissolved gases, and chlorophyll are discussed. Different tracers are found to have surface eddy diffusivities that differ significantly in magnitude.
Resumo:
Although Ca transport in plants is highly complex, the overexpression of vacuolar Ca2+ transporters in crops is a promising new technology to improve dietary Ca supplies through biofortification. Here, we sought to identify novel targets for increasing plant Ca accumulation using genetical and comparative genomics. Expression quantitative trait locus (eQTL) mapping to 1895 cis- and 8015 trans-loci were identified in shoots of an inbred mapping population of Brassica rapa (IMB211 × R500); 23 cis- and 948 trans-eQTLs responded specifically to altered Ca supply. eQTLs were screened for functional significance using a large database of shoot Ca concentration phenotypes of Arabidopsis thaliana. From 31 Arabidopsis gene identifiers tagged to robust shoot Ca concentration phenotypes, 21 mapped to 27 B. rapa eQTLs, including orthologs of the Ca2+ transporters At-CAX1 and At-ACA8. Two of three independent missense mutants of BraA.cax1a, isolated previously by targeting induced local lesions in genomes, have allele-specific shoot Ca concentration phenotypes compared with their segregating wild types. BraA.CAX1a is a promising target for altering the Ca composition of Brassica, consistent with prior knowledge from Arabidopsis. We conclude that multiple-environment eQTL analysis of complex crop genomes combined with comparative genomics is a powerful technique for novel gene identification/prioritization.
Resumo:
Age-related decline in the integrity of mitochondria is an important contributor to the human ageing process. In a number of ageing stem cell populations, this decline in mitochondrial function is due to clonal expansion of individual mitochondrial DNA (mtDNA) point mutations within single cells. However the dynamics of this process and when these mtDNA mutations occur initially are poorly understood. Using human colorectal epithelium as an exemplar tissue with a well-defined stem cell population, we analysed samples from 207 healthy participants aged 17-78 years using a combination of techniques (Random Mutation Capture, Next Generation Sequencing and mitochondrial enzyme histochemistry), and show that: 1) non-pathogenic mtDNA mutations are present from early embryogenesis or may be transmitted through the germline, whereas pathogenic mtDNA mutations are detected in the somatic cells, providing evidence for purifying selection in humans, 2) pathogenic mtDNA mutations are present from early adulthood (<20 years of age), at both low levels and as clonal expansions, 3) low level mtDNA mutation frequency does not change significantly with age, suggesting that mtDNA mutation rate does not increase significantly with age, and 4) clonally expanded mtDNA mutations increase dramatically with age. These data confirm that clonal expansion of mtDNA mutations, some of which are generated very early in life, is the major driving force behind the mitochondrial dysfunction associated with ageing of the human colorectal epithelium.
Resumo:
Identifying the source of atmospheric rivers: Are they rivers of moisture exported from the subtropics or footprints left behind by poleward travelling storms? The term atmospheric river is used to describe corridors of strong water vapor transport in the troposphere. Filaments of enhanced water vapor, commonly observed in satellite imagery extending from the subtropics to the extratropics, are routinely used as a proxy for identifying these regions of strong water vapor transport. The precipitation associated with these filaments of enhanced water vapor can lead to high impact flooding events. However, there remains some debate as to how these filaments form. In this paper we analyse the transport of water vapor within a climatology of wintertime North Atlantic extratropical cyclones. Results show that atmospheric rivers are formed by the cold front which sweeps up water vapor in the warm sector as it catches up with the warm front. This causes a narrow band of high water vapor content to form ahead of the cold front at the base of the warm conveyor belt airflow. Thus, water vapor in the cyclone's warm sector, and not long-distance transport of water vapor from the subtropics, is responsible for the generation of filaments of high water vapor content. A continuous cycle of evaporation and moisture convergence within the cyclone replenishes water vapor lost via precipitation. Thus, rather than representing a direct and continuous feed of moist air from the subtropics into the centre of a cyclone (as suggested by the term atmospheric river), these filaments are, in-fact, the result of water vapor exported from the cyclone and thus they represent the footprints left behind as cyclones travel polewards from subtropics.
Resumo:
Abstract The concept of values “fit” has been a significant theme in the management literature for many years. It is argued that where there is alignment of staff and organizational values a range of positive outcomes are encountered. What is unclear is how this translates into the charity sector. This study explores the phenomenon of values alignment in two UK charities. Questionnaires were used to measure staff values, perceptions of organization values and staff commitment. Drawing on the work of Finegan (2000), an interaction term is used as a proxy for fit. Analyses of data from 286 participants indicated that it was the perceptions of organization values that had the greatest impact on staff commitment. The alignment of staff values and perceptions of organization values only had a degree of effect within one of the charities. This challenges the dominant view on such alignment and the implications of this are discussed. Keywords staff, values fit, commitment, organizational identification
Resumo:
Extensive research has examined attentional bias for threat in anxious adults and school-aged children but it is unclear when this anxiety-related bias is first established. This study uses eyetracking technology to assess attentional bias in a sample of 83 children aged 3 or 4 years. Of these, 37 (19 female) met criteria for an anxiety disorder and 46 (30 female) did not. Gaze was recorded during a free-viewing task with angry-neutral face pairs presented for 1250 ms. There was no indication of between-group differences in threat bias, with both anxious and non-anxious groups showing vigilance for angry faces as well as longer dwell times to angry over neutral faces. Importantly, however, the anxious participants spent significantly less time looking at the faces overall, when compared to the non-anxious group. The results suggest that both anxious and non-anxious preschool-aged children preferentially attend to threat but that anxious children may be more avoidant of faces than non-anxious children.
Resumo:
Some recent winters in Western Europe have been characterized by the occurrence of multiple extratropical cyclones following a similar path. The occurrence of such cyclone clusters leads to large socio-economic impacts due to damaging winds, storm surges, and floods. Recent studies have statistically characterized the clustering of extratropical cyclones over the North Atlantic and Europe and hypothesized potential physical mechanisms responsible for their formation. Here we analyze 4 months characterized by multiple cyclones over Western Europe (February 1990, January 1993, December 1999, and January 2007). The evolution of the eddy driven jet stream, Rossby wave-breaking, and upstream/downstream cyclone development are investigated to infer the role of the large-scale flow and to determine if clustered cyclones are related to each other. Results suggest that optimal conditions for the occurrence of cyclone clusters are provided by a recurrent extension of an intensified eddy driven jet toward Western Europe lasting at least 1 week. Multiple Rossby wave-breaking occurrences on both the poleward and equatorward flanks of the jet contribute to the development of these anomalous large-scale conditions. The analysis of the daily weather charts reveals that upstream cyclone development (secondary cyclogenesis, where new cyclones are generated on the trailing fronts of mature cyclones) is strongly related to cyclone clustering, with multiple cyclones developing on a single jet streak. The present analysis permits a deeper understanding of the physical reasons leading to the occurrence of cyclone families over the North Atlantic, enabling a better estimation of the associated cumulative risk over Europe.
Resumo:
The quantification of uncertainty is an increasingly popular topic, with clear importance for climate change policy. However, uncertainty assessments are open to a range of interpretations, each of which may lead to a different policy recommendation. In the EQUIP project researchers from the UK climate modelling, statistical modelling, and impacts communities worked together on ‘end-to-end’ uncertainty assessments of climate change and its impacts. Here, we use an experiment in peer review amongst project members to assess variation in the assessment of uncertainties between EQUIP researchers. We find overall agreement on key sources of uncertainty but a large variation in the assessment of the methods used for uncertainty assessment. Results show that communication aimed at specialists makes the methods used harder to assess. There is also evidence of individual bias, which is partially attributable to disciplinary backgrounds. However, varying views on the methods used to quantify uncertainty did not preclude consensus on the consequential results produced using those methods. Based on our analysis, we make recommendations for developing and presenting statements on climate and its impacts. These include the use of a common uncertainty reporting format in order to make assumptions clear; presentation of results in terms of processes and trade-offs rather than only numerical ranges; and reporting multiple assessments of uncertainty in order to elucidate a more complete picture of impacts and their uncertainties. This in turn implies research should be done by teams of people with a range of backgrounds and time for interaction and discussion, with fewer but more comprehensive outputs in which the range of opinions is recorded.
Resumo:
This paper describes the hydrochemistry of a lowland, urbanised river-system, The Cut in England, using in situ sub-daily sampling. The Cut receives effluent discharges from four major sewage treatment works serving around 190,000 people. These discharges consist largely of treated water, originally abstracted from the River Thames and returned via the water supply network, substantially increasing the natural flow. The hourly water quality data were supplemented by weekly manual sampling with laboratory analysis to check the hourly data and measure further determinands. Mean phosphorus and nitrate concentrations were very high, breaching standards set by EU legislation. Though 56% of the catchment area is agricultural, the hydrochemical dynamics were significantly impacted by effluent discharges which accounted for approximately 50% of the annual P catchment input loads and, on average, 59% of river flow at the monitoring point. Diurnal dissolved oxygen data demonstrated high in-stream productivity. From a comparison of high frequency and conventional monitoring data, it is inferred that much of the primary production was dominated by benthic algae, largely diatoms. Despite the high productivity and nutrient concentrations, the river water did not become anoxic and major phytoplankton blooms were not observed. The strong diurnal and annual variation observed showed that assessments of water quality made under the Water Framework Directive (WFD) are sensitive to the time and season of sampling. It is recommended that specific sampling time windows be specified for each determinand, and that WFD targets should be applied in combination to help identify periods of greatest ecological risk. This article is protected by copyright. All rights reserved.
Resumo:
Scintillometry, a form of ground-based remote sensing, provides the capability to estimate surface heat fluxes over scales of a few hundred metres to kilometres. Measurements are spatial averages, making this technique particularly valuable over areas with moderate heterogeneity such as mixed agricultural or urban environments. In this study, we present the structure parameters of temperature and humidity, which can be related to the sensible and latent heat fluxes through similarity theory, for a suburban area in the UK. The fluxes are provided in the second paper of this two-part series. A millimetre-wave scintillometer was combined with an infrared scintillometer along a 5.5 km path over northern Swindon. The pairing of these two wavelengths offers sensitivity to both temperature and humidity fluctuations, and the correlation between wavelengths is also used to retrieve the path-averaged temperature–humidity correlation. Comparison is made with structure parameters calculated from an eddy covariance station located close to the centre of the scintillometer path. The performance of the measurement techniques under different conditions is discussed. Similar behaviour is seen between the two data sets at sub-daily timescales. For the two summer-to-winter periods presented here, similar evolution is displayed across the seasons. A higher vegetation fraction within the scintillometer source area is consistent with the lower Bowen ratio observed (midday Bowen ratio < 1) compared with more built-up areas around the eddy covariance station. The energy partitioning is further explored in the companion paper.
Resumo:
A millimetre-wave scintillometer was paired with an infrared scintillometer, enabling estimation of large-area evapotranspiration across northern Swindon, a suburban area in the UK. Both sensible and latent heat fluxes can be obtained using this "two-wavelength" technique, as it is able to provide both temperature and humidity structure parameters, offering a major advantage over conventional single-wavelength scintillometry. The first paper of this two-part series presented the measurement theory and structure parameters. In this second paper, heat fluxes are obtained and analysed. These fluxes, estimated using two-wavelength scintillometry over an urban area, are the first of their kind. Source area modelling suggests the scintillometric fluxes are representative of 5–10 km2. For comparison, local-scale (0.05–0.5 km2) fluxes were measured by an eddy covariance station. Similar responses to seasonal changes are evident at the different scales but the energy partitioning varies between source areas. The response to moisture availability is explored using data from 2 consecutive years with contrasting rainfall patterns (2011–2012). This extensive data set offers insight into urban surface-atmosphere interactions and demonstrates the potential for two-wavelength scintillometry to deliver fluxes over mixed land cover, typically representative of an area 1–2 orders of magnitude greater than for eddy covariance measurements. Fluxes at this scale are extremely valuable for hydro-meteorological model evaluation and assessment of satellite data products