171 resultados para ISSN 1680-5923
Resumo:
This review investigates the performance of photovoltaic and solar-assisted ground-source heat pumps in which solar heat is transferred to the ground to improve the coefficient of performance. A number of studies indicate that, for systems with adequately sized ground heat exchangers, the effect on system efficiency is small: about 1% improvement if the heat source is photovoltaic, a 1–2% decline if the source is solar thermal. With possible exceptions for systems in which the ground heat exchanger is undersized, or natural recharge from ground water is insufficient, solar thermal energy is better used for domestic hot water than to recharge ground heat. This appears particularly true outside the heating season, as although much of the heat extracted from the ground can be replaced, it seems to have little effect on the coefficient of performance. Any savings in electrical consumption that do result from an improved coefficient can easily be outweighed by an inefficient control system for the circulation pumps.
Resumo:
Data from civil engineering projects can inform the operation of built infrastructure. This paper captures lessons for such data handover, from projects into operations, through interviews with leading clients and their supply chain. Clients are found to value receiving accurate and complete data. They recognise opportunities to use high quality information in decision-making about capital and operational expenditure; as well as in ensuring compliance with regulatory requirements. Providing this value to clients is a motivation for information management in projects. However, data handover is difficult as key people leave before project completion; and different data formats and structures are used in project delivery and operations. Lessons learnt from leading practice include defining data requirements at the outset, getting operations teams involved early, shaping the evolution of interoperable systems and standards, developing handover processes to check data rather than documentation, and fostering skills to use and update project data in operations
Resumo:
The last decade has seen successful clinical application of polymer–protein conjugates (e.g. Oncaspar, Neulasta) and promising results in clinical trials with polymer–anticancer drug conjugates. This, together with the realisation that nanomedicines may play an important future role in cancer diagnosis and treatment, has increased interest in this emerging field. More than 10 anticancer conjugates have now entered clinical development. Phase I/II clinical trials involving N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-doxorubicin (PK1; FCE28068) showed a four- to fivefold reduction in anthracycline-related toxicity, and, despite cumulative doses up to 1680 mg/m2 (doxorubicin equivalent), no cardiotoxicity was observed. Antitumour activity in chemotherapy-resistant/refractory patients (including breast cancer) was also seen at doxorubicin doses of 80–320 mg/m2, consistent with tumour targeting by the enhanced permeability (EPR) effect. Hints, preclinical and clinical, that polymer anthracycline conjugation can bypass multidrug resistance (MDR) reinforce our hope that polymer drugs will prove useful in improving treatment of endocrine-related cancers. These promising early clinical results open the possibility of using the water-soluble polymers as platforms for delivery of a cocktail of pendant drugs. In particular, we have recently described the first conjugates to combine endocrine therapy and chemotherapy. Their markedly enhanced in vitro activity encourages further development of such novel, polymer-based combination therapies. This review briefly describes the current status of polymer therapeutics as anticancer agents, and discusses the opportunities for design of second-generation, polymer-based combination therapy, including the cocktail of agents that will be needed to treat resistant metastatic cancer.
Resumo:
Cities may be responsible for up to 70% of global carbon emissions and 75% of global energy consumption and by 2050 it is estimated that 70% of the world's population could live in cities. The critical challenge for contemporary urbanism, therefore, is to understand how to develop the knowledge, capacity and capability for public agencies, the private sector and multiple users in city regions systemically to re-engineer their built environment and urban infrastructure in response to climate change and resource constraints. Re-Engineering the City 2020–2050: Urban Foresight and Transition Management (Retrofit 2050) is a major new interdisciplinary project funded under the Engineering and Physical Science Research Council's (EPSRC) Sustainable Urban Environments Programme which seeks to address this challenge. This briefing describes the background and conceptual framing of Retrofit 2050 project, its aims and objectives and research approach.
Resumo:
The protease activated receptor-2 (PAR-2) belongs to a family of G-protein-coupled receptors that are activated by proteolysis. Trypsin cleaves PAR-2, exposing an N-terminal tethered ligand (SLIGRL) that activates the receptor. Messenger RNA (mRNA) for PAR-2 was found in guinea pig airway tissue by reverse transcription-polymerase chain reaction, and PAR-2 was found by immunohistochemistry in airway epithelial and smooth-muscle cells. In anesthetized guinea pigs, trypsin and SLIGRL-NH(2) (given intratracheally or intravenously) caused a bronchoconstriction that was inhibited by the combination of tachykinin-NK(1) and -NK(2) receptor antagonists and was potentiated by inhibition of nitric oxide synthase (NOS). Trypsin and SLIGRL-NH(2) relaxed isolated trachea and main bronchi, and contracted intrapulmonary bronchi. Relaxation of main bronchi was abolished or reversed to contraction by removal of epithelium, administration of indomethacin, and NOS inhibition. PAR-1, PAR-3, and PAR-4 were not involved in the bronchomotor action of either trypsin or SLIGRL-NH(2), because ligands of these receptors were inactive either in vitro or in vivo, and because thrombin (a PAR-1 and PAR-3 agonist) did not show cross-desensitization with PAR-2 agonists in vivo. Thus, we have localized PAR-2 to the guinea-pig airways, and have shown that activation of PAR-2 causes multiple motor effects in these airways, including in vivo bronchoconstriction, which is in part mediated by a neural mechanism.
Resumo:
A ground source heat pump assisted by an array of photovoltaic (PV)-thermal modules was studied in this work. Extracting heat from an array of PV modules should improve the performance of both the PV cells and the heat pump. A series of computer simulations compare the performance of a ground source heat pump with a short ground circuit, used to provide space heating and domestic hot water at a house in southern England. The results indicate that extracting heat from an array of PV-thermal modules would improve the performance of a ground source heat pump with an undersized ground loop. Nevertheless, open air thermal collectors could be more effective, especially during winter. In one model more electricity was saved in ohmic heating than was generated by cooling the PV cells. Cooling the PV modules was found to increase their electrical output up to 4%, but much of the extra electricity was consumed by the cooling pumps.