220 resultados para Flood forecasting.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we discuss the current state-of-the-art in estimating, evaluating, and selecting among non-linear forecasting models for economic and financial time series. We review theoretical and empirical issues, including predictive density, interval and point evaluation and model selection, loss functions, data-mining, and aggregation. In addition, we argue that although the evidence in favor of constructing forecasts using non-linear models is rather sparse, there is reason to be optimistic. However, much remains to be done. Finally, we outline a variety of topics for future research, and discuss a number of areas which have received considerable attention in the recent literature, but where many questions remain.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article explains the basis for a theory of economic forecasting developed over the past decade by the authors. The research has resulted in numerous articles in academic journals, two monographs, Forecasting Economic Time Series, 1998, Cambridge University Press, and Forecasting Nonstationary Economic Time Series, 1999, MIT Press, and three edited volumes, Understanding Economic Forecasts, 2001, MIT Press, A Companion to Economic Forecasting, 2002, Blackwells, and the Oxford Bulletin of Economics and Statistics, 2005. The aim here is to provide an accessible, non-technical, account of the main ideas. The interested reader is referred to the monographs for derivations, simulation evidence, and further empirical illustrations, which in turn reference the original articles and related material, and provide bibliographic perspective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluate the predictive power of leading indicators for output growth at horizons up to 1 year. We use the MIDAS regression approach as this allows us to combine multiple individual leading indicators in a parsimonious way and to directly exploit the information content of the monthly series to predict quarterly output growth. When we use real-time vintage data, the indicators are found to have significant predictive ability, and this is further enhanced by the use of monthly data on the quarter at the time the forecast is made

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the impact of data revisions on the forecast performance of a SETAR regime-switching model of U.S. output growth. The impact of data uncertainty in real-time forecasting will affect a model's forecast performance via the effect on the model parameter estimates as well as via the forecast being conditioned on data measured with error. We find that benchmark revisions do affect the performance of the non-linear model of the growth rate, and that the performance relative to a linear comparator deteriorates in real-time compared to a pseudo out-of-sample forecasting exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vintage-based vector autoregressive models of a single macroeconomic variable are shown to be a useful vehicle for obtaining forecasts of different maturities of future and past observations, including estimates of post-revision values. The forecasting performance of models which include information on annual revisions is superior to that of models which only include the first two data releases. However, the empirical results indicate that a model which reflects the seasonal nature of data releases more closely does not offer much improvement over an unrestricted vintage-based model which includes three rounds of annual revisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine how the accuracy of real-time forecasts from models that include autoregressive terms can be improved by estimating the models on ‘lightly revised’ data instead of using data from the latest-available vintage. The benefits of estimating autoregressive models on lightly revised data are related to the nature of the data revision process and the underlying process for the true values. Empirically, we find improvements in root mean square forecasting error of 2–4% when forecasting output growth and inflation with univariate models, and of 8% with multivariate models. We show that multiple-vintage models, which explicitly model data revisions, require large estimation samples to deliver competitive forecasts. Copyright © 2012 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate model ensembles are widely heralded for their potential to quantify uncertainties and generate probabilistic climate projections. However, such technical improvements to modeling science will do little to deliver on their ultimate promise of improving climate policymaking and adaptation unless the insights they generate can be effectively communicated to decision makers. While some of these communicative challenges are unique to climate ensembles, others are common to hydrometeorological modeling more generally, and to the tensions arising between the imperatives for saliency, robustness, and richness in risk communication. The paper reviews emerging approaches to visualizing and communicating climate ensembles and compares them to the more established and thoroughly evaluated communication methods used in the numerical weather prediction domains of day-to-day weather forecasting (in particular probabilities of precipitation), hurricane and flood warning, and seasonal forecasting. This comparative analysis informs recommendations on best practice for climate modelers, as well as prompting some further thoughts on key research challenges to improve the future communication of climate change uncertainties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the calibration and evaluation of flood inundation models are a prerequisite for their successful application, there is a clear need to ensure that the performance measures that quantify how well models match the available observations are fit for purpose. This paper evaluates the binary pattern performance measures that are frequently used to compare flood inundation models with observations of flood extent. This evaluation considers whether these measures are able to calibrate and evaluate model predictions in a credible and consistent way, i.e. identifying the underlying model behaviour for a number of different purposes such as comparing models of floods of different magnitudes or on different catchments. Through theoretical examples, it is shown that the binary pattern measures are not consistent for floods of different sizes, such that for the same vertical error in water level, a model of a flood of large magnitude appears to perform better than a model of a smaller magnitude flood. Further, the commonly used Critical Success Index (usually referred to as F<2 >) is biased in favour of overprediction of the flood extent, and is also biased towards correctly predicting areas of the domain with smaller topographic gradients. Consequently, it is recommended that future studies consider carefully the implications of reporting conclusions using these performance measures. Additionally, future research should consider whether a more robust and consistent analysis could be achieved by using elevation comparison methods instead.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flood simulation models and hazard maps are only as good as the underlying data against which they are calibrated and tested. However, extreme flood events are by definition rare, so the observational data of flood inundation extent are limited in both quality and quantity. The relative importance of these observational uncertainties has increased now that computing power and accurate lidar scans make it possible to run high-resolution 2D models to simulate floods in urban areas. However, the value of these simulations is limited by the uncertainty in the true extent of the flood. This paper addresses that challenge by analyzing a point dataset of maximum water extent from a flood event on the River Eden at Carlisle, United Kingdom, in January 2005. The observation dataset is based on a collection of wrack and water marks from two postevent surveys. A smoothing algorithm for identifying, quantifying, and reducing localized inconsistencies in the dataset is proposed and evaluated showing positive results. The proposed smoothing algorithm can be applied in order to improve flood inundation modeling assessment and the determination of risk zones on the floodplain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article examines the ability of several models to generate optimal hedge ratios. Statistical models employed include univariate and multivariate generalized autoregressive conditionally heteroscedastic (GARCH) models, and exponentially weighted and simple moving averages. The variances of the hedged portfolios derived using these hedge ratios are compared with those based on market expectations implied by the prices of traded options. One-month and three-month hedging horizons are considered for four currency pairs. Overall, it has been found that an exponentially weighted moving-average model leads to lower portfolio variances than any of the GARCH-based, implied or time-invariant approaches.