189 resultados para Equatorial orbits


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical simulations are presented of the ion distribution functions seen by middle-altitude spacecraft in the low-latitude boundary layer (LLBL) and cusp regions when reconnection is, or has recently been, taking place at the equatorial magnetopause. From the evolution of the distribution function with time elapsed since the field line was opened, both the observed energy/observation-time and pitch-angle/energy dispersions are well reproduced. Distribution functions showing a mixture of magnetosheath and magnetospheric ions, often thought to be a signature of the LLBL, are found on newly opened field lines as a natural consequence of the magnetopause effects on the ions and their flight times. In addition, it is shown that the extent of the source region of the magnetosheath ions that are detected by a satellite is a function of the sensitivity of the ion instrument . If the instrument one-count level is high (and/or solar-wind densities are low), the cusp ion precipitation detected comes from a localised region of the mid-latitude magnetopause (around the magnetic cusp), even though the reconnection takes place at the equatorial magnetopause. However, if the instrument sensitivity is high enough, then ions injected from a large segment of the dayside magnetosphere (in the relevant hemisphere) will be detected in the cusp. Ion precipitation classed as LLBL is shown to arise from the low-latitude magnetopause, irrespective of the instrument sensitivity. Adoption of threshold flux definitions has the same effect as instrument sensitivity in artificially restricting the apparent source region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Superposed epoch studies have been carried out in order to determine the ionospheric response at mid-latitudes to southward turnings of the interplanetary magnetic field (IMF). This is compared with the geomagnetic response, as seen in the indices K p, AE and Dst. The solar wind, IMF and geomagnetic data used were hourly averages from the years 1967–1989 and thus cover a full 22-year cycle in the solar magnetic field. These data were divided into subsets, determined by the magnitudes of the southward turnings and the concomitant increase in solar wind pressure. The superposed epoch studies were carried out using the time of the southward turning as time zero. The response of the mid-latitude ionosphere is studied by looking at the F-layer critical frequencies, f o F2, from hourly soundings by the Slough ionosonde and their deviation from the monthly median values, δf o F2. For the southward turnings with a change in B z of δB z > 11.5 nT accompanied by a solar wind dynamic pressure P exceeding 5 nPa, the F region critical frequency, f o F2, shows a marked decrease, reaching a minimum value about 20 h after the southward turning. This recovers to pre-event values over the subsequent 24 h, on average. The Dst index shows the classic storm-time decrease to about −60 nT. Four days later, the index has still to fully recover and is at about −25 nT. Both the K p and AE indices show rises before the southward turnings, when the IMF is strongly northward but the solar wind dynamic pressure is enhanced. The average AE index does register a clear isolated pulse (averaging 650 nT for 2 h, compared with a background peak level of near 450 nT at these times) showing enhanced energy deposition at high latitudes in substorms but, like K p, remains somewhat enhanced for several days, even after the average IMF has returned to zero after 1 day. This AE background decays away over several days as the Dst index recovers, indicating that there is some contamination of the currents observed at the AE stations by the continuing enhanced equatorial ring current. For data averaged over all seasons, the critical frequencies are depressed at Slough by 1.3 MHz, which is close to the lower decile of the overall distribution of δf o Fl values. Taking 30-day periods around summer and winter solstice, the largest depression is 1.6 and 1.2 MHz, respectively. This seasonal dependence is confirmed by a similar study for a Southern Hemisphere station, Argentine Island, giving peak depressions of 1.8 MHz and 0.5 MHz for summer and winter. For the subset of turnings where δB z > 11.5 nT and P ≤ 5 nPa, the response of the geomagnetic indices is similar but smaller, while the change in δf o F2 has all but disappeared. This confirms that the energy deposited at high latitudes, which leads to the geomagnetic and ionospheric disturbances following a southward turning of the IMF, increases with the energy density (dynamic pressure) of the solar wind flow. The magnitude of all responses are shown to depend on δB z . At Slough, the peak depression always occurs when Slough rotates into the noon sector. The largest ionospheric response is for southward turnings seen between 15–21 UT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The asymmetries in the convective flows, current systems, and particle precipitation in the high-latitude dayside ionosphere which are related to the equatorial plane components of the interplanetary magnetic field (IMF) are discussed in relation to the results of several recent observational studies. It is argued that all of the effects reported to date which are ascribed to the y component of the IMF can be understood, at least qualitatively, in terms of a simple theoretical picture in which the effects result from the stresses exerted on the magnetosphere consequent on the interconnection of terrestrial and interplanetary fields. In particular, relaxation under the action of these stresses allows, in effect, a partial penetration of the IMF into the magnetospheric cavity, such that the sense of the expected asymmetry effects on closed field lines can be understood, to zeroth order, in terms of the “dipole plus uniform field” model. In particular, in response to IMF By, the dayside cusp should be displaced in longitude about noon in the same sense as By in the northern hemisphere, and in the opposite sense to By in the southern hemisphere, while simultaneously the auroral oval as a whole should be shifted in the dawn-dusk direction in the opposite sense with respect to By. These expected displacements are found to be consistent with recently published observations. Similar considerations lead to the suggestion that the auroral oval may also undergo displacements in the noon-midnight direction which are associated with the x component of the IMF. We show that a previously published study of the position of the auroral oval contains strong initial evidence for the existence of this effect. However, recent results on variations in the latitude of the cusp are more ambiguous. This topic therefore requires further study before definitive conclusions can be drawn.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new dayside source of O+ ions for the polar magnetosphere is described, and a statistical survey presented of upward flows of O+ ions using 2 years of data from the retarding ion mass spectrometer (RIMS) experiment on board DE 1, at geocentric distances below 3 RE and invariant latitudes above 40°. The flows are classified according to their spin angle distributions. It is believed that the spacecraft potential near perigee is generally less than +2 V, in which case the entire O+ population at energies below about 60 eV is sampled. Examples are given of field-aligned flow and of transversely accelerated “core” O+ ions; in the latter events a large fraction of the total O+ ion population has been transversely accelerated, and in some extreme cases all the observed ions (of all ion species) have been accelerated, and no residual cold population is observed (“toroidal” distributions). However, by far the most common type of O+ upflow seen by DE RIMS lies near the dayside polar cap boundary (particularly in the prenoon sector) and displays an asymmetric spin angle distribution. In such events the ions carry an upward heat flux, and strong upflow of all species is present (H+, He+, O+, O++, and N+ have all been observed with energies up to about 30 eV, but with the majority of ions below about 2 eV); hence, these have been termed upwelling ion events. The upwelling ions are embedded in larger regions of classical light ion polar wind and are persistently found under the following conditions: at geocentric distances greater than 1.4 RE; at all Kp in summer, but only at high Kp in winter. Low-energy conical ions (<30 eV) are only found near the equatorial edge of the events, the latitude of which moves equatorward with increasing Kp and is highly correlated with the location of field-aligned currents. The RIMS data are fully consistent with a “mass spectrometer effect,” whereby light ions and the more energetic O+ ions flow into the lobes and mantle and hence the far-tail plasma sheet, but lower-energy O+ is swept across the polar cap by the convection electric field, potentially acting as a source for the nightside auroral acceleration regions. The occurrence probability of upwelling ion events, as compared to those of low-altitude transversely accelerated core ions and of field-aligned flow, suggests this could be the dominant mechanism for supplying the nightside auroral acceleration region, and subsequently the ring current and near-earth plasma sheet, with ionospheric O+ ions. It is shown that the total rate of O+ outflow in upwelling ion events (greater than 10^25 s^{−1}) is sufficient for the region near the dayside polar cap boundary to be an important ionospheric heavy ion source.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have shown that the Indo-Pacific atmospheric response to ENSO comprises two dominant modes of variability: a meridionally quasi-symmetric response (independent from the annual cycle) and an anti-symmetric response (arising from the nonlinear atmospheric interaction between ENSO variability and the annual cycle), referred to as the combination mode (C-Mode). This study demonstrates that the direct El Niño signal over the tropics is confined to the equatorial region and has no significant impact on the atmospheric response over East Asia. The El Niño-associated equatorial anomalies can be expanded towards off-equatorial regions by the C-Mode through ENSO’s interaction with the annual cycle. The C-Mode is the prime driver for the development of an anomalous low-level anticyclone over the western North Pacific (WNP) during the El Niño decay phase, which usually transports more moisture to East Asia and thereby causes more precipitation over southern China. We use an Atmospheric General Circulation Model that well reproduces the WNP anticyclonic anomalies when both El Niño sea surface temperature (SST) anomalies as well as the SST annual cycle are prescribed as boundary conditions. However, no significant WNP anticyclonic circulation anomaly appears during the El Niño decay phase when excluding the SST annual cycle. Our analyses of observational data and model experiments suggest that the annual cycle plays a key role in the East Asian climate anomalies associated with El Niño through their nonlinear atmospheric interaction. Hence, a realistic simulation of the annual cycle is crucial in order to correctly capture the ENSO-associated climate anomalies over East Asia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyse the spatial expression of seasonal climates of the Mediterranean and northern Africa in pre-industrial (piControl) and mid-Holocene (midHolocene, 6 yr BP) simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Modern observations show four distinct precipitation regimes characterized by differences in the seasonal distribution and total amount of precipitation: an equatorial band characterized by a double peak in rainfall, the monsoon zone characterized by summer rainfall, the desert characterized by low seasonality and total precipitation, and the Mediterranean zone characterized by summer drought. Most models correctly simulate the position of the Mediterranean and the equatorial climates in the piControl simulations, but overestimate the extent of monsoon influence and underestimate the extent of desert. However, most models fail to reproduce the amount of precipitation in each zone. Model biases in the simulated magnitude of precipitation are unrelated to whether the models reproduce the correct spatial patterns of each regime. In the midHolocene, the models simulate a reduction in winter rainfall in the equatorial zone, and a northward expansion of the monsoon with a significant increase in summer and autumn rainfall. Precipitation is slightly increased in the desert, mainly in summer and autumn, with northward expansion of the monsoon. Changes in the Mediterranean are small, although there is an increase in spring precipitation consistent with palaeo-observations of increased growing-season rainfall. Comparison with reconstructions shows most models underestimate the mid-Holocene changes in annual precipitation, except in the equatorial zone. Biases in the piControl have only a limited influence on midHolocene anomalies in ocean–atmosphere models; carbon-cycle models show no relationship between piControl bias and midHolocene anomalies. Biases in the prediction of the midHolocene monsoon expansion are unrelated to how well the models simulate changes in Mediterranean climate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current methods for initialising coupled atmosphere-ocean forecasts often rely on the use of separate atmosphere and ocean analyses, the combination of which can leave the coupled system imbalanced at the beginning of the forecast, potentially accelerating the development of errors. Using a series of experiments with the European Centre for Medium-range Weather Forecasts coupled system, the magnitude and extent of these so-called initialisation shocks is quantified, and their impact on forecast skill measured. It is found that forecasts initialised by separate ocean and atmospheric analyses do exhibit initialisation shocks in lower atmospheric temperature, when compared to forecasts initialised using a coupled data assimilation method. These shocks result in as much as a doubling of root-mean-square error on the first day of the forecast in some regions, and in increases that are sustained for the duration of the 10-day forecasts performed here. However, the impacts of this choice of initialisation on forecast skill, assessed using independent datasets, were found to be negligible, at least over the limited period studied. Larger initialisation shocks are found to follow a change in either the atmospheric or ocean model component between the analysis and forecast phases: changes in the ocean component can lead to sea surface temperature shocks of more than 0.5K in some equatorial regions during the first day of the forecast. Implications for the development of coupled forecast systems, particularly with respect to coupled data assimilation methods, are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spatial pattern of precipitation variability in tropical and subtropical Africa over the late Quaternary has long been debated. Prevailing hypotheses variously infer (1) insolation-controlled asymmetry of wet phases between hemispheres, (2) symmetric contraction and expansion of the tropical rainbelt, and (3) independent control on moisture available in Southern Africa via sea surface temperatures in the Indian Ocean. In this study we use climate-model simulations covering the last glacial cycle (120 kyr) with HadCM3 and the multi-model ensembles from PMIP3 (the Palaeoclimate Model Intercomparison Project) to investigate the long-term behaviour of the African rainbelt, and test these simulations against existing empirical palaeohydrological records. Through regional model-data comparisons we find evidence for the validity of several hypotheses, with various proposed processes occurring concurrently but with different regional emphasis (e.g. asymmetric shifts at the seasonal extremes and symmetric expansions/ contractions towards West equatorial regions). Crucially, variations in rainfall are associated with multiple forcing mechanisms that vary in their dominance both spatially and temporally over the glacial cycle; an important consideration when interpreting and extrapolating from often relatively short palaeoenvironmental records.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How tropical cyclone (TC) activity in the northwestern Pacific might change in a future climate is assessed using multidecadal Atmospheric Model Intercomparison Project (AMIP)-style and time-slice simulations with the ECMWF Integrated Forecast System (IFS) at 16-km and 125-km global resolution. Both models reproduce many aspects of the present-day TC climatology and variability well, although the 16-km IFS is far more skillful in simulating the full intensity distribution and genesis locations, including their changes in response to El Niño–Southern Oscillation. Both IFS models project a small change in TC frequency at the end of the twenty-first century related to distinct shifts in genesis locations. In the 16-km IFS, this shift is southward and is likely driven by the southeastward penetration of the monsoon trough/subtropical high circulation system and the southward shift in activity of the synoptic-scale tropical disturbances in response to the strengthening of deep convective activity over the central equatorial Pacific in a future climate. The 16-km IFS also projects about a 50% increase in the power dissipation index, mainly due to significant increases in the frequency of the more intense storms, which is comparable to the natural variability in the model. Based on composite analysis of large samples of supertyphoons, both the development rate and the peak intensities of these storms increase in a future climate, which is consistent with their tendency to develop more to the south, within an environment that is thermodynamically more favorable for faster development and higher intensities. Coherent changes in the vertical structure of supertyphoon composites show system-scale amplification of the primary and secondary circulations with signs of contraction, a deeper warm core, and an upward shift in the outflow layer and the frequency of the most intense updrafts. Considering the large differences in the projections of TC intensity change between the 16-km and 125-km IFS, this study further emphasizes the need for high-resolution modeling in assessing potential changes in TC activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Model intercomparisons have identified important deficits in the representation of the stable boundary layer by turbulence parametrizations used in current weather and climate models. However, detrimental impacts of more realistic schemes on the large-scale flow have hindered progress in this area. Here we implement a total turbulent energy scheme into the climate model ECHAM6. The total turbulent energy scheme considers the effects of Earth’s rotation and static stability on the turbulence length scale. In contrast to the previously used turbulence scheme, the TTE scheme also implicitly represents entrainment flux in a dry convective boundary layer. Reducing the previously exaggerated surface drag in stable boundary layers indeed causes an increase in southern hemispheric zonal winds and large-scale pressure gradients beyond observed values. These biases can be largely removed by increasing the parametrized orographic drag. Reducing the neutral limit turbulent Prandtl number warms and moistens low-latitude boundary layers and acts to reduce longstanding radiation biases in the stratocumulus regions, the Southern Ocean and the equatorial cold tongue that are common to many climate models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the first multi-event study of the spatial and temporal structuring of the aurora to provide statistical evidence of the near-Earth plasma instability which causes the substorm onset arc. Using data from ground-based auroral imagers, we study repeatable signatures of along-arc auroral beads, which are thought to represent the ionospheric projection of magnetospheric instability in the near-Earth plasma sheet. We show that the growth and spatial scales of these wave-like fluctuations are similar across multiple events, indicating that each sudden auroral brightening has a common explanation. We find statistically that growth rates for auroral beads peak at low wavenumber with the most unstable spatial scales mapping to an azimuthal wavelength λ≈1700 − 2500 km in the equatorial magnetosphere at around 9-12 RE. We compare growth rates and spatial scales with a range of theoretical predictions of magnetotail instabilities, including the cross-field current instability and the shear-flow ballooning instability. We conclude that, although the cross-field current instability can generate similar magnitude of growth rates, the range of unstable wavenumbers indicates that the shear-flow ballooning instability is the most likely explanation for our observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the effect of a thermal forcing confined to the midlatitudes of one hemisphere on the eddy-driven jet in the opposite hemisphere. We demonstrate the existence of an “interhemispheric teleconnection,” whereby warming (cooling) the Northern Hemisphere causes both the intertropical convergence zone (ITCZ) and the Southern Hemispheric midlatitude jet to shift northward (southward). The interhemispheric teleconnection is effected by a change in the asymmetry of the Hadley cells: as the ITCZ shifts away from the Equator, the cross-equatorial Hadley cell intensifies, fluxing more momentum toward the subtropics and sustaining a stronger subtropical jet. Changes in subtropical jet strength, in turn, alter the propagation of extratropical waves into the tropics, affecting eddy momentum fluxes and the eddy-driven westerlies. The relevance of this mechanism is demonstrated in the context of future climate change simulations, where shifts of the ITCZ are significantly related to shifts of the Southern Hemispheric eddy-driven jet in austral winter. The possible relevance of the proposed mechanism to paleoclimates is discussed, particularly with regard to theories of ice age terminations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The El Niño/Southern Oscillation (ENSO) is the leading mode of interannual climate variability. However, it is unclear how ENSO has responded to external forcing, particularly orbitally induced changes in the amplitude of the seasonal cycle during the Holocene. Here we present a reconstruction of seasonal and interannual surface conditions in the tropical Pacific Ocean from a network of high-resolution coral and mollusc records that span discrete intervals of the Holocene. We identify several intervals of reduced variance in the 2 to 7 yr ENSO band that are not in phase with orbital changes in equatorial insolation, with a notable 64% reduction between 5,000 and 3,000 years ago. We compare the reconstructed ENSO variance and seasonal cycle with that simulated by nine climate models that include orbital forcing, and find that the models do not capture the timing or amplitude of ENSO variability, nor the mid-Holocene increase in seasonality seen in the observations; moreover, a simulated inverse relationship between the amplitude of the seasonal cycle and ENSO-related variance in sea surface temperatures is not found in our reconstructions. We conclude that the tropical Pacific climate is highly variable and subject to millennial scale quiescent periods. These periods harbour no simple link to orbital forcing, and are not adequately simulated by the current generation of models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simultaneous nadir overpasses (SNOs) of polar-orbiting satellites are most frequent in polar areas but can occur at any latitude when the equatorial crossing times of the satellites become close owing to orbital drift. We use global SNOs of polar orbiting satellites to evaluate the intercalibration of microwave humidity sounders from the more frequent high-latitude SNOs. We have found based on sensitivity analyses that optimal distance and time thresholds for defining collocations are pixel centers less than 5 km apart and time differences less than 300 s. These stringent collocation criteria reduce the impact of highly variable surface or atmospheric conditions on the estimated biases. Uncertainties in the estimated biases are dominated by the combined radiometric noise of the instrument pair. The effects of frequency changes between different versions of the humidity sounders depend on the amount of water vapor in the atmosphere. There are significant scene radiance and thus latitude dependencies in the estimated biases and this has to taken into account while intercalibrating microwave humidity sounders. Therefore the results obtained using polar SNOs will not be representative for moist regions, necessitating the use of global collocations for reliable intercalibration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The question is addressed whether using unbalanced updates in ocean-data assimilation schemes for seasonal forecasting systems can result in a relatively poor simulation of zonal currents. An assimilation scheme, where temperature observations are used for updating only the density field, is compared to a scheme where updates of density field and zonal velocities are related by geostrophic balance. This is done for an equatorial linear shallow-water model. It is found that equatorial zonal velocities can be detoriated if velocity is not updated in the assimilation procedure. Adding balanced updates to the zonal velocity is shown to be a simple remedy for the shallow-water model. Next, optimal interpolation (OI) schemes with balanced updates of the zonal velocity are implemented in two ocean general circulation models. First tests indicate a beneficial impact on equatorial upper-ocean zonal currents.