182 resultados para EARTHS MAGNETIC-FIELD


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Combined observations by meridian-scanning photometers, all-sky auroral TV camera and the EISCAT radar permitted a detailed analysis of the temporal and spatial development of the midday auroral breakup phenomenon and the related ionospheric ion flow pattern within the 71°–75° invariant latitude radar field of view. The radar data revealed dominating northward and westward ion drifts, of magnitudes close to the corresponding velocities of the discrete, transient auroral forms, during the two different events reported here, characterized by IMF |BY/BZ| < 1 and > 2, respectively (IMF BZ between −8 and −3 nT and BY > 0). The spatial scales of the discrete optical events were ∼50 km in latitude by ∼500 km in longitude, and their lifetimes were less than 10 min. Electric potential enhancements with peak values in the 30–50 kV range are inferred along the discrete arc in the IMF |BY/BZ| < 1 case from the optical data and across the latitudinal extent of the radar field of view in the |BY/BZ| > 2 case. Joule heat dissipation rates in the maximum phase of the discrete structures of ∼ 100 ergs cm−2 s−1 (0.1 W m−2) are estimated from the photometer intensities and the ion drift data. These observations combined with the additional characteristics of the events, documented here and in several recent studies (i.e., their quasi-periodic nature, their motion pattern relative to the persistent cusp or cleft auroral arc, the strong relationship with the interplanetary magnetic field and the associated ion drift/E field events and ground magnetic signatures), are considered to be strong evidence in favour of a transient, intermittent reconnection process at the dayside magnetopause and associated energy and momentum transfer to the ionosphere in the polar cusp and cleft regions. The filamentary spatial structure and the spectral characteristics of the optical signature indicate associated localized ˜1-kV potential drops between the magnetopause and the ionosphere during the most intense auroral events. The duration of the events compares well with the predicted characteristic times of momentum transfer to the ionosphere associated with the flux transfer event-related current tubes. It is suggested that, after this 2–10 min interval, the sheath particles can no longer reach the ionosphere down the open flux tube, due to the subsequent super-Alfvénic flow along the magnetopause, conductivities are lower and much less momentum is extracted from the solar wind by the ionosphere. The recurrence time (3–15 min) and the local time distribution (∼0900–1500 MLT) of the dayside auroral breakup events, combined with the above information, indicate the important roles of transient magnetopause reconnection and the polar cusp and cleft regions in the transfer of momentum and energy between the solar wind and the magnetosphere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A procedure is presented for fitting incoherent scatter radar data from non-thermal F-region ionospheric plasma, using theoretical spectra previously predicted. It is found that values of the shape distortion factor D∗, associated with deviations of the ion velocity distribution from a Maxwellian distribution, and ion temperatures can be deduced (the results being independent of the path of iteration) if the angle between the line-of-sight and the geomagnetic field is larger than about 15–20°. The procedure can be used with one or both of two sets of assumptions. These concern the validity of the adopted model for the line-of-sight ion velocity distribution in the one case or for the full three-dimensional ion velocity distribution function in the other. The distribution function employed was developed to describe the line-of-sight velocity distribution for large aspect angles, but both experimental data and Monte Carlo simulations indicate that the form of the field-perpendicular distribution can also describe the distribution at more general aspect angles. The assumption of this form for the line-of-sight velocity distribution at a general aspect angle enables rigorous derivation of values of the one-dimensional, line-of-sight ion temperature. With some additional assumptions (principally that the field-parallel distribution is always Maxwellian and there is a simple relationship between the ion temperature anisotropy and the distortion of the field-perpendicular distribution from a Maxwellian), fits to data for large aspect angles enable determination of line-of-sight temperatures at all aspect angles and hence, of the average ion temperature and the ion temperature anisotropy. For small aspect angles, the analysis is restricted to the determination of the line-of-sight ion temperature because the theoretical spectrum is insensitive to non-thermal effects when the plasma is viewed along directions almost parallel to the magnetic field. This limitation is expected to apply to any realistic model of the ion velocity distribution function and its consequences are discussed. Fit strategies which allow for mixed ion composition are also considered. Examples of fits to data from various EISCAT observing programmes are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The usual interpretation of a flux transfer event (FTE) at the magnetopause, in terms of time-dependent and possibly patchy reconnection, demands that it generate an ionospheric signature. Recent ground-based observations have revealed that auroral transients in the cusp/cleft region have all the characteristics required of FTE effects. However, signatures in the major available dataset, namely that from low-altitude polar-orbiting satellites, have not yet been identified. In this paper, we consider a cusp pass of the DE-2 spacecraft during strongly southward IMF. The particle detectors show magnetosheath ion injection signatures. However, the satellite motion and convection are opposed, and we discuss how the observed falling energy dispersion of the precipitating ions can have arisen from a static, moving or growing source. The spatial scale of the source is typical of an FTE. A simple model of the ionospheric signature of an FTE reproduces the observed electric and magnetic field perturbations. Precipitating electrons of peak energy ∼100eV are found to lie on the predicted boundary of the newly-opened tube, very similar to those found on the edges of FTEs at the magnetopause. The injected ions are within this boundary and their dispersion is consistent with its growth as reconnection proceeds. The reconnection potential and the potential of the induced ionospheric motion are found to be the same (≃25kV). The scanning imager on DE-1 shows a localised transient auroral feature around DE-2 at this time, similar to the recent optical/radar observations of FTEs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Data are presented from the EISCAT CP-3-E experiment which show the presence of non-thermal plasma over a range of latitudes. The O+ ion-velocity distribution function is almost toroidal when the electric field reaches values of 125 mV m−1. The ion temperature derived from such data assuming a Maxwellian distribution function will overestimate the true ion temperature when the observing angle is large with respect to the magnetic field, and underestimate the temperature when the aspect angle is small. When the expressions for the distribution function are extended to include mixed ion composition, an improvement is sometimes found in fitting the observed data, and estimates of the composition can be made. Such an analysis suggests that N2+ can occasionally form a significant part of the total ion density in a narrow height region centred at 275 km.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Incoherent scatter data from non-thermal F-region ionospheric plasma are analysed, using theoretical spectra predicted by Raman et al. It is found that values of the semi-empirical drift parameter D∗, associated with deviations of the ion velocity distribution from a Maxwellian, and the plasma temperatures can be rigorously deduced (the results being independent of the path of iteration) if the angle between the line-of-sight and the geomagnetic field is larger than about 15–20 degrees. For small aspect angles, the deduced value of the average (or 3-D) ion temperature remains ambiguous and the analysis is restricted to the determination of the line-of-sight temperature because the theoretical spectrum is insensitive to non-thermal effects when the plasma is viewed along directions almost parallel to the magnetic field. This limitation is expected to apply to any realistic model of the ion velocity distribution, and its consequences are discussed. Fit strategies which allow for mixed ion composition are also considered. Examples of fits to data from various EISCAT observing programmes are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Simultaneous observations in the high-latitude ionosphere and in the near-Earth interplanetary medium have revealed the control exerted by the interplanetary magnetic field and the solar wind flow on field-perpendicular convection of plasma in both the ionosphere and the magnetosphere. Previous studies, using statistical surveys of data from both low-altitude polar-orbiting satellites and ground-based radars and magnetometers, have established that magnetic reconnection at the dayside magnetopause is the dominant driving mechanism for convection. More recently, ground-based data and global auroral images of higher temporal resolution have been obtained and used to study the response of the ionospheric flows to changes in the interplanetary medium. These observations show that ionospheric convection responds rapidly (within a few minutes) to both increases and decreases in the reconnection rate over a range of spatial scales, as well as revealing transient enhancements which are also thought to be related to magnetopause phenomena. Such results emphasize the potential of ground-based radars and other remote-sensing instruments for studies of the Earth's interaction with the interplanetary medium.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent radar studies of field-perpendicular flows in the auroral ionosphere, in conjunction with observations of the interplanetary medium immediately upstream of the Earth's bow shock, have revealed direct control of dayside convection by the Bz component of the interplanetary magnetic field (IMF). The ionospheric flows begin to respond to both northward and southward turnings of the IMF impinging upon the magnetopause after a delay of only a few minutes in the early afternoon sector, rising to about 15 minutes nearer dawn and dusk. In both the polar cap and the auroral oval, the subsequent rise and decay times are of order 5–10 minutes. We conclude there is very little convection “flywheel” effect in the dayside polar ionosphere and that only newly-opened flux tubes impart significant momentum to the ionosphere, in a relatively narrow region immediately poleward of the cusp. These findings concerning the effects of quasi-steady reconnection have important implications for any ionospheric signatures of transient reconnection which should be considerably shorter-lived than thought hitherto. In order to demonstrate the difficulty of uniquely identifying a Flux Transfer Event (FTE) in ground-based magnetometer data, we present observations of an impulsive signature, identical with that expected for an FTE if data from only one station is studied, following an observed magnetopause compression when the IMF was purely northward. We also report new radar observations of a viscous-like interaction, consistent with an origin on the flanks of the magnetotail and contributing an estimated 15–30kV to the total cross-cap potential during quiet periods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The time scale of the response of the high-latitude dayside ionospheric flow to changes in the North-South component of the interplanetary magnetic field (IMF) has been investigated by examining the time delays between corresponding sudden changes. Approximately 40 h of simultaneous IMF and ionospheric flow data have been examined, obtained by the AMPTE-UKS and -IRM spacecraft and the EISCAT “Polar” experiment, respectively, in which 20 corresponding sudden changes have been identified. Ten of these changes were associated with southward turnings of the IMF, and 10 with northward turnings. It has been found that the corresponding flow changes occurred simultaneously over the whole of the “Polar” field-of-view, extending more than 2° in invariant latitude, and that the ionospheric response delay following northward turnings is the same as that following southward turnings, though the form of the response is different in the two cases. The shortest response time, 5.5 ± 3.2 min, is found in the early- to mid-afternoon sector, increasing to 9.5 ± 3.0 min in the mid-morning sector, and to 9.5 ± 3.1 min near to dusk. These times represent the delays in the appearance of perturbed flows in the “Polar” field-of-view following the arrival of IMF changes at the subsolar magnetopause. Overall, the results agree very well with those derived by Etemadi et al. (1988, Planet. Space Sci.36, 471) from a general cross-correlation analysis of the IMF Bz and “Polar” beam-swinging vector flow data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Assessment is made of the effect of the assumed form for the ion velocity distribution function on estimates of three-dimensional ion temperature from one-dimensional observations. Incoherent scatter observations by the EISCAT radar at a variety of aspect angles are used to demonstrate features of ion temperature determination and to study the ion velocity distribution function. One form of the distribution function which has recently been widely used In the interpretation of EISCAT measurements, is found to be consistent with the data presented here, in that no deviation from a Maxwellian can be detected for observations along the magnetic field line and that the ion temperature and its anisotropy are accurately predicted. It is shown that theoretical predictions of the anisotropy by Monte Carlo computations are very accurate, the observed value being greater by only a few percent. It is also demonstrated for the case studied that errors of up to 93% are introduced into the ion temperature estimate if the anisotropy is neglected. Observations at an aspect angle of 54.7°, which are not subject to this error, have a much smaller uncertainty (less than 1%) due to the adopted form of the distribution of line-of-sight velocity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In 1984 and 1985 a series of experiments was undertaken in which dayside ionospheric flows were measured by the EISCAT “Polar” experiment, while observations of the solar wind and interplanetary magnetic field (IMF) were made by the AMPTE UKS and IRM spacecraft upstream from the Earth's bow shock. As a result, 40 h of simultaneous data were acquired, which are analysed in this paper to investigate the relationship between the ionospheric flow and the North-South (Bz) component of the IMF. The ionospheric flow data have 2.5 min resolution, and cover the dayside local time sector from ∼ 09:30 to ∼ 18:30 M.L.T. and the latitude range from 70.8° to 74.3°. Using cross-correlation analysis it is shown that clear relationships do exist between the ionospheric flow and IMF Bz, but that the form of the relations depends strongly on latitude and local time. These dependencies are readily interpreted in terms of a twinvortex flow pattern in which the magnitude and latitudinal extent of the flows become successively larger as Bz becomes successively more negative. Detailed maps of the flow are derived for a range of Bz values (between ± 4 nT) which clearly demonstrate the presence of these effects in the data. The data also suggest that the morning reversal in the East-West component of flow moves to earlier local times as Bz, declines in value and becomes negative. The correlation analysis also provides information on the ionospheric response time to changes in IMF Bz, it being found that the response is very rapid indeed. The most rapid response occurs in the noon to mid-afternoon sector, where the westward flows of the dusk cell respond with a delay of 3.9 ± 2.2 min to changes in the North-South field at the subsolar magnetopause. The flows appear to evolve in form over the subsequent ~ 5 min interval, however, as indicated by the longer response times found for the northward component of flow in this sector (6.7 ±2.2 min), and in data from earlier and later local times. No evidence is found for a latitudinal gradient in response time; changes in flow take place coherently in time across the entire radar field-of-view.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a first overview of flows in the high latitude ionosphere observed at 15 s resolution using the U.K.-Polar EISCAT experiment. Data are described from experiments conducted on two days, 27 October 1984 and 29 August 1985, which together span the local times between about 0200 and 2130MLT and cover five different regions of ionospheric flow. With increasing local time, these are: the dawn auroral zone flow cell, the dayside region of low background flows equatorward of the flow cells, the dusk auroral zone flow cell, the boundary region between the dusk auroral zone and the polar cap, and the evening polar cap. Flows in both the equatorward and poleward portions of the auroral zone cells appear to be relatively smooth, while in the central region of high speed flow considerable variations are generally present. These have the form of irregular fluctuations on a wide range of time scales in the early morning dawn cell, and impulsive wave-like variations with periods of a few minutes in the afternoon dusk cell. In the dayside region between the flow cells, the ionosphere is often essentially stagnant for long intervals, but low amplitude ULF waves with a period of about 5 min can also occur and persist for many cycles. These conditions are punctuated at one to two hour intervals by sudden ‘flow burst’ events with impulsively generated damped wave trains. Initial burst flows are generally directed poleward and can peak at line-of-sight speeds in excess of 1 km s^{−1} after perhaps 45 s. Flows in the polar cap are reasonably smooth on time scales of a few minutes and show no evidence for the presence of ULF waves. Under most, but not all, of the above conditions, the beam-swinging algorithm used to determine background vector flows should produce meaningful results. Comparison of these flow data with simultaneous plasma and magnetic field measurements in the solar wind, made by the AMPTE IRM and UKS spacecraft, emphasizes the strong control exerted on high latitude flows by the north-south component of the IMF.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent observations from the Dynamics Explorer 1 (DE-1) spacecraft have shown that the dayside auroral zone is an important source of very low-energy superthermal O^+ ions for the polar magnetosphere. When observed at 2000- to 5000-km altitude, the core of the O^+ distribution exhibits transverse heating to energies on the order of 10 eV, significant upward heat flux, and subsonic upward flow at significant flux levels exceeding 10^8 cm^{-2}s^{-1}. The term "upwelling ions" has been adopted to label these flows, which stand out in sharp contrast to the light ion polar wind flows observed in the same altitude range in the polar cap and subauroral magnetosphere. We have chosen a typical upwelling ion event for detailed study, correlating retarding ion mass spectrometer observations of the low-energy plasma with energetic ion observations and local electromagnetic field observations. The upwelling ion signature is colocated with the magnetospheric cleft as marked by precipitating energetic magnetosheath ions. The apparent ionospheric heating is clearly linked with the magnetic field signatures of strong field-aligned currents in the vicinity of the dayside polar cap boundary. Electric field and ion plasma measurements indicate that a very strong and localized convection channel or jet exists coincident with the other signatures of this event. These observations indicate that transverse ion heating to temperatures on the order of 10^5 K in the 2000- to 5000-km ionosphere is an important factor in producing heavy ion outflows into the polar magnetosphere. This result contrasts with recent suggestions that electron heating to temperatures of order 10^4 K is the most important parameter with regard to O^+ outflow.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The retarding ion mass spectrometer on the Dynamics Explorer 1 spacecraft has generated a unique data set which documents, among other things, the occurrence of non-Maxwellian superthermal features in the auroral topside ionosphere distribution functions. In this paper, we provide a representative sampling of the observed features and their spatial morphology as observed at altitudes in the range from a few thousand kilometers to a few earth radii. At lower altitudes, these features appear at auroral latitudes separating regions of polar cap and subauroral light ion polar wind. The most common signature is the appearance of an upgoing energetic tail having conical lobes representing significant ion heat and number flux in all species, including O+. Transverse ion heating below the observation point at several thousand kilometers is clearly associated with O+ outflows. In some events observed, transverse acceleration apparently involves nearly the entire thermal plasma, the distribution function becomes highly anisotropic with T⊥ > T∥, and may actually develop a minimum at zero velocity, i.e., become a torus having as its axis the local magnetic field direction. At higher altitudes, the localized dayside source region appears as a field aligned flow which is dispersed tailward across the polar cap according to parallel velocity by antisunward convective flow, so that upflowing low energy O+ ions appear well within the polar cap region. While this flow can appear beamlike in a given location, the energy dispersion observed implies a very broad energy distribution at the source, extending from a few tenths of an eV to in excess of 50 eV. On the nightside, upgoing ion beams are found to be latitudinally bounded by regions of ion conics whose half angles increase with increasing separation from the beam region, indicating low altitude transverse acceleration in immediate proximity to, and below, the parallel acceleration region. These observations reveal a clear distinction between classical polar wind ion outflow and O+ enhanced superthermal flows, and confirm the importance of low altitude transverse acceleration in ionospheric plasma transport, as suggested by previous observations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The magnetoviscous effect, change in viscosity with change in magnetic field strength, and the anisotropy of magnetoviscous effect, change in viscosity with orientation of magnetic field, have been a focus of interest since four decades. A satisfactory understanding of the microscopic origin of anisotropy of magnetoviscous effect in magnetic fluids is still a matter of debate and a field of intense research. Here, we present an extensive simulation study to understand the relation between the anisotropy of magnetoviscous effect and the underlying change in micro-structures of ferrofluids. Our results indicate that field-induced chain-like structures respond very differently depending on their orientation relative to the direction of an externally applied shear flow, which leads to a pronounced anisotropy of viscosity. In this work, we focus on three exemplary values of dipolar interaction strengths which correspond to weak, intermediate and strong interactions between dipolar colloidal particles. We compare our simulation results with an experimental study on cobalt-based ferrofluids as well as with an existing theoretical model called the chain model. A non-monotonic behaviour in the anisotropy of magnetoviscous effect is observed with increasing dipolar interaction strength and is explained in terms of micro-structure formation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Empirical Mode Decomposition is presented as an alternative to traditional analysis methods to decompose geomagnetic time series into spectral components. Important comments on the algorithm and its variations will be given. Using this technique, planetary wave modes of 5-, 10-, and 16-day mean periods can be extracted from magnetic field components of three different stations in Germany. In a second step, the amplitude modulation functions of these wave modes can be shown to contain significant contribution from solar cycle variation through correlation with smoothed sunspot numbers. Additionally, the data indicate connections with geomagnetic jerk occurrences, supported by a second set of data providing reconstructed near-Earth magnetic field for 150 years. Usually attributed to internal dynamo processes within the Earth's outer core, the question of who is impacting whom will be briefly discussed here.