177 resultados para Competitive landscape
Resumo:
Among all the paradigms in economic theory, the theoretical predictions of oligopoly were the first to be examined in the laboratory. In this chapter, instead of surveying all the experiments with few sellers, we adopt a narrower definition of the term “oligopoly”, and focus on the experiments that were directly inspired by the basic oligopolistic models of Cournot, Bertrand, Hotelling, Stackelberg, and some extensions. Most of the experiments we consider in this chapter have been run in the last three decades. This literature can be considered as a new wave of experimental works aiming at representing basic oligopolistic markets and testing their properties. The chapter is divided into independent sections referring to different parts of the oligopolistic theory, including both monopoly as well as a number of extensions of the basic models, which have been chosen with the aim of providing a representative list of the relevant experimental findings.
Resumo:
Report provided and presented at the Oxford Farming Conference
Resumo:
The present work describes a new tool that helps bidders improve their competitive bidding strategies. This new tool consists of an easy-to-use graphical tool that allows the use of more complex decision analysis tools in the field of Competitive Bidding. The graphic tool described here tries to move away from previous bidding models which attempt to describe the result of an auction or a tender process by means of studying each possible bidder with probability density functions. As an illustration, the tool is applied to three practical cases. Theoretical and practical conclusions on the great potential breadth of application of the tool are also presented.
Resumo:
Iso-score curves graph (iSCG) and mathematical relationships between Scoring Parameters (SP) and Forecasting Parameters (FP) can be used in Economic Scoring Formulas (ESF) used in tendering to distribute the score among bidders in the economic part of a proposal. Each contracting authority must set an ESF when publishing tender specifications and the strategy of each bidder will differ depending on the ESF selected and the weight of the overall proposal scoring. The various mathematical relationships and density distributions that describe the main SPs and FPs, and the representation of tendering data by means of iSCGs, enable the generation of two new types of graphs that can be very useful for bidders who want to be more competitive: the scoring and position probability graphs.
Resumo:
This paper examines the extent to which engineers can influence the competitive behavior of bidders in Best Value or multi-attribute construction auctions, where both the (dollar) bid and technical non-price criteria are scored according to a scoring rule. From a sample of Spanish construction auctions with a variety of bid scoring rules, it is found that bidders are influenced by the auction rules in significant and predictable ways. The bid score weighting, bid scoring formula and abnormally low bid criterion are variables likely to influence the competitiveness of bidders in terms of both their aggressive/conservative bidding and concentration/dispersion of bids. Revealing the influence of the bid scoring rules and their magnitude on bidders’ competitive behavior opens the door for the engineer to condition bidder competitive behavior in such a way as to provide the balance needed to achieve the owner’s desired strategic outcomes.
Resumo:
The variability of populations over time is positively associated with their risk of local extinction. Previous work has shown that populations at the high-latitude boundary of species’ ranges show higher inter-annual variability, consistent with increased sensitivity and exposure to adverse climatic conditions. However, patterns of population variability at both high- and low-latitude species range boundaries have not yet been concurrently examined. Here, we assess the inter-annual population variability of 28 butterfly species between 1994 and 2009 at 351 and 18 sites in the United Kingdom and Catalonia, Spain, respectively. Local population variability is examined with respect to the position of the species’ bioclimatic envelopes (i.e. whether the population falls within areas of the ‘core’ climatic suitability or is a climatically ‘marginal’ population), and in relation to local landscape heterogeneity, which may influence these range location – population dynamic relationships. We found that butterfly species consistently show latitudinal gradients in population variability, with increased variability in the more northerly UK. This pattern is even more marked for southerly distributed species with ‘marginal’ climatic suitability in the UK but ‘core’ climatic suitability in Catalonia. In addition, local landscape heterogeneity did influence these range location – population dynamic relationships. Habitat heterogeneity was associated with dampened population dynamics, especially for populations in the UK. Our results suggest that promoting habitat heterogeneity may promote the persistence of populations at high-latitude range boundaries, which may potentially aid northwards expansion under climate warming. We did not find evidence that population variability increases towards southern range boundaries. Sample sizes for this region were low, but there was tentative evidence, in line with previous ecological theory, that local landscape heterogeneity may promote persistence in these retracting low-latitude range boundary populations.
Resumo:
Projected impacts of climate change on the populations and distributions of species pose a challenge for conservationists. In response, a number of adaptation strategies to enable species to persist in a changing climate have been proposed. Management to maximise the quality of habitat at existing sites may reduce the magnitude or frequency of climate-driven population declines. In addition large-scale management of landscapes could potentially improve the resilience of populations by facilitating inter-population movements. A reduction in the obstacles to species’ range expansion, may also allow species to track changing conditions better through shifts to new locations, either regionally or locally. However, despite a strong theoretical base, there is limited empirical evidence to support these management interventions. This makes it difficult for conservationists to decide on the most appropriate strategy for different circumstances. Here extensive data from long-term monitoring of woodland birds at individual sites are used to examine the two-way interactions between habitat and both weather and population count in the previous year. This tests the extent to which site-scale and landscape-scale habitat attributes may buffer populations against variation in winter weather (a key driver of woodland bird population size) and facilitate subsequent population growth. Our results provide some support for the prediction that landscape-scale attributes (patch isolation and area of woodland habitat) may influence the ability of some woodland bird species to withstand weather-mediated population declines. These effects were most apparent among generalist woodland species. There was also evidence that several, primarily specialist, woodland species are more likely to increase following population decline where there is more woodland at both site and landscape scales. These results provide empirical support for the concept that landscape-scale conservation efforts may make the populations of some woodland bird species more resilient to climate change. However in isolation, management is unlikely to provide a universal benefit to all species.
Resumo:
Context Landscape heterogeneity (the composition and configuration of different landcover types) plays a key role in shaping woodland bird assemblages in wooded-agricultural mosaics. Understanding how species respond to landscape factors could contribute to preventing further decline of woodland bird populations. Objective To investigate how woodland birds with different species traits respond to landscape heterogeneity, and to identify whether specific landcover types are important for maintaining diverse populations in wooded-agricultural environments. Methods Birds were sampled from woodlands in 58 2 x 2 km tetrads across southern Britain. Landscape heterogeneity was quantified for each tetrad. Bird assemblage response was determined using redundancy analysis combined with variation partitioning and response trait analyses. Results For woodland bird assemblages, the independent explanatory importance of landscape composition and landscape configuration variables were closely interrelated. When considered simultaneously during variation partitioning, the community response was better represented by compositional variables. Different species responded to different landscape features and this could be explained by traits relating to woodland association, foraging strata and nest location. Ubiquitous, generalist species, many of which were hole-nesters or ground foragers, correlated positively with urban landcover while specialists of broadleaved woodland avoided landscapes containing urban areas. Species typical of coniferous woodland correlated with large conifer plantations. Conclusions At the 2 x 2 km scale, there was evidence that the availability of resources provided by proximate landcover types was highly important for shaping woodland bird assemblages. Further research to disentangle the effects of composition and configuration at different spatial scales is advocated.