188 resultados para Boundary controller


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Of all the various definitions of the polar cap boundary that have been used in the past, the most physically meaningful and significant is the boundary between open and closed field lines. Locating this boundary is very important as it defines which regions and phenomena are on open field lines and which are on closed. This usually has fundamental implications for the mechanisms invoked. Unfortunately, the open-closed boundary is usually very difficult to identify, particularly where it maps to an active reconnection site. This paper looks at the topological reconnection classes that can take place, both at the magnetopause and in the cross-tail current sheet and discusses the implications for identifying the open-closed boundary when reconnection is giving velocity filter dispersion of signatures. On the dayside, it is shown that the dayside boundary plasma sheet and low-latitude boundary layer precipitations are well explained as being on open field lines, energetic ions being present because of reflection of central plasma sheet ions off the two Alfvén waves launched by the reconnection site (the outer one of which is the magnetopause). This also explains otherwise anomalous features of the dayside convection pattern in the cusp region. On the nightside, similar considerations place the open-closed boundary somewhat poleward of the velocity-dispersed ion structures which are a signature of the plasma sheet boundary layer ion flows in the tail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polar cap boundary is a subject of central importance to current magnetosphere-ionosphere research and its applications in “space weather” activities. The problems are that it has a number of definitions, and that the most physically meaningful definition (namely the open-closed field line boundary) is very difficult to identify in observations. New understanding of the importance of the structure and dynamics of the boundary region made the time right for a meeting reviewing our knowledge in this area. The Advanced Study Institute (ASI) on Svalbard in June 1997 discussed the boundary on both the dayside and the nightside, mapping magnetically to the dayside magnetopause and to tail plasma sheet/lobe interface, respectively. We held a “brainstorming” session, in which different ideas which arose from the presented papers were discussed and developed, and a summary session, in which session convenors gave a personal view of progress that has been made and problems which still need solving. Both were designed as ways of promoting further discussion. This paper attempts to distil some of the themes that emerged from these discussions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze of ion populations observed by the NOAA-12 satellite within dayside auroral transients. The data are matched with an open magnetopause model which allows for the transmission of magnetosheath ions across one or both of the two Alfvén waves which emanate from the magnetopause reconnection site. It also allows for reflection and acceleration of ions of magnetospheric origin by these waves. From the good agreement found between the model and the observations, we propose that the events and the low-latitude boundary precipitation are both on open field lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pass of the AMPTE-UKS satellite through the low-latitude boundary layer (LLBL) at 8:30 MLT is studied in detail. The magnetosheath field is predominantly northward. It is shown that multiple transitions through part or all of the layer of antisunward flow lead to overestimation of both the voltage across this layer and its width. The voltage is estimated to be only about 3 kV and this implies that the full LLBL is about 1200 km thick, consistent with previous studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper complements that in this issue by Clauer et al. concerning the international GISMOS campaign of 3–5 June 1987. From a detailed study of the EISCAT data, the polar-cap boundary, as defined by an almost shear east-west convection reversal, is found to contract across the EISCAT field of view between 04 and 07 MLT. An annulus of enhanced ion temperature and non-thermal plasma is observed immediately equatorward of the contracting boundary due to the lag in the response of the neutral-wind pattern to the change in ion flows. The ion flow inside the polar cap and at the boundary is shown to be relatively smooth, compared with that in the auroral oval, at 15-second resolution. The flow at the boundary is directed poleward, with velocities which exceed that of the boundary itself. The effect of velocity shears on the beamswinging technique used to derive the ion flows has been analysed in detail and it is found that spurious flows across a moving boundary can be generated. However, these are much smaller than the observed flows into the polar cap and cannot explain the 7 kV potential difference across the observed segment of the cap boundary between 04:30–06:30 UT. The ion temperature enhancements at the two observing azimuths is used to define the boundary orientation. The results are consistent with recent observations of slow anti-sunward flow of closed field lines on the flanks of the geomagnetic tail, which appears to be generated by some form of “viscous” coupling to the magnetosheath plasma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data recorded by the POLAR experiment run on the EISCAT radar during the international GISMOS campaign of 3–5 June 1987 are studied in detail. The polar-cap boundary, as denned by an almost shear East-West convection reversal, was observed to jump southward across the EISCAT field of view in two steps at 02:00 and 03:00 Magnetic Local Time and subsequently to contract back between 04:00 and 07:00 M.L.T. An annulus of enhanced ion temperature and non-thermal plasma was observed immediately equatorward of the contracting boundary due to the lag in the response of the neutral-wind pattern to the change in ion flows. The ion flow at the boundary is shown to be relatively smooth at 15 s resolution and directed northward, with velocities which exceed that of the boundary itself. The effect of velocity shears on the beamswinging technique used to derive the ion flows is analyzed in detail and it is shown that, for certain orientations of the cap boundary, spurious flows into the cap can be generated. However, these are much smaller than the observed flows into the polar cap and cannot explain the potential difference across the observed segment of the cap boundary (extending over 2 h of M.L.T.) which is roughly 7 kV. Similarly, an observed slowing of the zonal flow near the boundary cannot be explained as an error introduced by the use of the beamswinging technique. The results could be interpreted as being due to reconnection occurring on the dawn flank of the magnetopause (mapping to the polar cap at 04:30 06:30 M.L.T.). However, they are more consistent with recent observations of slow anti-sunward flow of closed field lines on the flanks of the geomagnetic tail, which appears to be generated by some form of “viscous” coupling to the magnetosheath plasma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new dayside source of O+ ions for the polar magnetosphere is described, and a statistical survey presented of upward flows of O+ ions using 2 years of data from the retarding ion mass spectrometer (RIMS) experiment on board DE 1, at geocentric distances below 3 RE and invariant latitudes above 40°. The flows are classified according to their spin angle distributions. It is believed that the spacecraft potential near perigee is generally less than +2 V, in which case the entire O+ population at energies below about 60 eV is sampled. Examples are given of field-aligned flow and of transversely accelerated “core” O+ ions; in the latter events a large fraction of the total O+ ion population has been transversely accelerated, and in some extreme cases all the observed ions (of all ion species) have been accelerated, and no residual cold population is observed (“toroidal” distributions). However, by far the most common type of O+ upflow seen by DE RIMS lies near the dayside polar cap boundary (particularly in the prenoon sector) and displays an asymmetric spin angle distribution. In such events the ions carry an upward heat flux, and strong upflow of all species is present (H+, He+, O+, O++, and N+ have all been observed with energies up to about 30 eV, but with the majority of ions below about 2 eV); hence, these have been termed upwelling ion events. The upwelling ions are embedded in larger regions of classical light ion polar wind and are persistently found under the following conditions: at geocentric distances greater than 1.4 RE; at all Kp in summer, but only at high Kp in winter. Low-energy conical ions (<30 eV) are only found near the equatorial edge of the events, the latitude of which moves equatorward with increasing Kp and is highly correlated with the location of field-aligned currents. The RIMS data are fully consistent with a “mass spectrometer effect,” whereby light ions and the more energetic O+ ions flow into the lobes and mantle and hence the far-tail plasma sheet, but lower-energy O+ is swept across the polar cap by the convection electric field, potentially acting as a source for the nightside auroral acceleration regions. The occurrence probability of upwelling ion events, as compared to those of low-altitude transversely accelerated core ions and of field-aligned flow, suggests this could be the dominant mechanism for supplying the nightside auroral acceleration region, and subsequently the ring current and near-earth plasma sheet, with ionospheric O+ ions. It is shown that the total rate of O+ outflow in upwelling ion events (greater than 10^25 s^{−1}) is sufficient for the region near the dayside polar cap boundary to be an important ionospheric heavy ion source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this review I summarise some of the most significant advances of the last decade in the analysis and solution of boundary value problems for integrable partial differential equations in two independent variables. These equations arise widely in mathematical physics, and in order to model realistic applications, it is essential to consider bounded domain and inhomogeneous boundary conditions. I focus specifically on a general and widely applicable approach, usually referred to as the Unified Transform or Fokas Transform, that provides a substantial generalisation of the classical Inverse Scattering Transform. This approach preserves the conceptual efficiency and aesthetic appeal of the more classical transform approaches, but presents a distinctive and important difference. While the Inverse Scattering Transform follows the "separation of variables" philosophy, albeit in a nonlinear setting, the Unified Transform is a based on the idea of synthesis, rather than separation, of variables. I will outline the main ideas in the case of linear evolution equations, and then illustrate their generalisation to certain nonlinear cases of particular significance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe some recent advances in the numerical solution of acoustic scattering problems. A major focus of the paper is the efficient solution of high frequency scattering problems via hybrid numerical-asymptotic boundary element methods. We also make connections to the unified transform method due to A. S. Fokas and co-authors, analysing particular instances of this method, proposed by J. A. De-Santo and co-authors, for problems of acoustic scattering by diffraction gratings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Helsinki Urban Boundary-Layer Atmosphere Network (UrBAN: http://urban.fmi.fi) is a dedicated research-grade observational network where the physical processes in the atmosphere above the city are studied. Helsinki UrBAN is the most poleward intensive urban research observation network in the world and thus will allow studying some unique features such as strong seasonality. The network's key purpose is for the understanding of the physical processes in the urban boundary layer and associated fluxes of heat, momentum, moisture, and other gases. A further purpose is to secure a research-grade database, which can be used internationally to validate and develop numerical models of air quality and weather prediction. Scintillometers, a scanning Doppler lidar, ceilometers, a sodar, eddy-covariance stations, and radiometers are used. This equipment is supplemented by auxiliary measurements, which were primarily set up for general weather and/or air-quality mandatory purposes, such as vertical soundings and the operational Doppler radar network. Examples are presented as a testimony to the potential of the network for urban studies, such as (i) evidence of a stable boundary layer possibly coupled to an urban surface, (ii) the comparison of scintillometer data with sonic anemometry above an urban surface, (iii) the application of scanning lidar over a city, and (iv) combination of sodar and lidar to give a fuller range of sampling heights for boundary layer profiling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The turbulent structure of a stratocumulus-topped marine boundary layer over a 2-day period is observed with a Doppler lidar at Mace Head in Ireland. Using profiles of vertical velocity statistics, the bulk of the mixing is identified as cloud driven. This is supported by the pertinent feature of negative vertical velocity skewness in the sub-cloud layer which extends, on occasion, almost to the surface. Both coupled and decoupled turbulence characteristics are observed. The length and timescales related to the cloud-driven mixing are investigated and shown to provide additional information about the structure and the source of the mixing inside the boundary layer. They are also shown to place constraints on the length of the sampling periods used to derive products, such as the turbulent dissipation rate, from lidar measurements. For this, the maximum wavelengths that belong to the inertial subrange are studied through spectral analysis of the vertical velocity. The maximum wavelength of the inertial subrange in the cloud-driven layer scales relatively well with the corresponding layer depth during pronounced decoupled structure identified from the vertical velocity skewness. However, on many occasions, combining the analysis of the inertial subrange and vertical velocity statistics suggests higher decoupling height than expected from the skewness profiles. Our results show that investigation of the length scales related to the inertial subrange significantly complements the analysis of the vertical velocity statistics and enables a more confident interpretation of complex boundary layer structures using measurements from a Doppler lidar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009–December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1 to 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging. The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Fennec climate program aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE Falcon 20 is described, with specific focus on instrumentation specially developed and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include: (1) the first airborne measurement of dust particles sized up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in-situ observations of processes in SABL clouds showing dust acting as CCN and IN at −15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold-pool (haboob) issued from deep convection over the Atlas, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area measurements suggest coarser particles provide a route for ozone depletion, (9) discrepancies between airborne coarse mode size distributions and AERONET sunphotometer retrievals under light dust loadings. These results provide insights into boundary layer and dust processes in the SHL region – a region of substantial global climatic importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m−2 . The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m−2.