220 resultados para recursive partitioning algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and coherent framework for partitioning uncertainty in multi-model climate ensembles is presented. The analysis of variance (ANOVA) is used to decompose a measure of total variation additively into scenario uncertainty, model uncertainty and internal variability. This approach requires fewer assumptions than existing methods and can be easily used to quantify uncertainty related to model-scenario interaction - the contribution to model uncertainty arising from the variation across scenarios of model deviations from the ensemble mean. Uncertainty in global mean surface air temperature is quantified as a function of lead time for a subset of the Coupled Model Intercomparison Project phase 3 ensemble and results largely agree with those published by other authors: scenario uncertainty dominates beyond 2050 and internal variability remains approximately constant over the 21st century. Both elements of model uncertainty, due to scenario-independent and scenario-dependent deviations from the ensemble mean, are found to increase with time. Estimates of model deviations that arise as by-products of the framework reveal significant differences between models that could lead to a deeper understanding of the sources of uncertainty in multi-model ensembles. For example, three models are shown diverging pattern over the 21st century, while another model exhibits an unusually large variation among its scenario-dependent deviations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and day-time even if cloud was present, could be a useful tool for operational flood relief management and flood forecasting. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, and in urban areas with reasonable accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article a simple and effective controller design is introduced for the Hammerstein systems that are identified based on observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a B-spline neural network. The controller is composed by computing the inverse of the B-spline approximated nonlinear static function, and a linear pole assignment controller. The contribution of this article is the inverse of De Boor algorithm that computes the inverse efficiently. Mathematical analysis is provided to prove the convergence of the proposed algorithm. Numerical examples are utilised to demonstrate the efficacy of the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a new nonlinear digital baseband predistorter design is introduced based on direct learning, together with a new Wiener system modeling approach for the high power amplifiers (HPA) based on the B-spline neural network. The contribution is twofold. Firstly, by assuming that the nonlinearity in the HPA is mainly dependent on the input signal amplitude the complex valued nonlinear static function is represented by two real valued B-spline neural networks, one for the amplitude distortion and another for the phase shift. The Gauss-Newton algorithm is applied for the parameter estimation, in which the De Boor recursion is employed to calculate both the B-spline curve and the first order derivatives. Secondly, we derive the predistorter algorithm calculating the inverse of the complex valued nonlinear static function according to B-spline neural network based Wiener models. The inverse of the amplitude and phase shift distortion are then computed and compensated using the identified phase shift model. Numerical examples have been employed to demonstrate the efficacy of the proposed approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive general analytic approximations for pricing European basket and rainbow options on N assets. The key idea is to express the option’s price as a sum of prices of various compound exchange options, each with different pairs of subordinate multi- or single-asset options. The underlying asset prices are assumed to follow lognormal processes, although our results can be extended to certain other price processes for the underlying. For some multi-asset options a strong condition holds, whereby each compound exchange option is equivalent to a standard single-asset option under a modified measure, and in such cases an almost exact analytic price exists. More generally, approximate analytic prices for multi-asset options are derived using a weak lognormality condition, where the approximation stems from making constant volatility assumptions on the price processes that drive the prices of the subordinate basket options. The analytic formulae for multi-asset option prices, and their Greeks, are defined in a recursive framework. For instance, the option delta is defined in terms of the delta relative to subordinate multi-asset options, and the deltas of these subordinate options with respect to the underlying assets. Simulations test the accuracy of our approximations, given some assumed values for the asset volatilities and correlations. Finally, a calibration algorithm is proposed and illustrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An algorithm for tracking multiple feature positions in a dynamic image sequence is presented. This is achieved using a combination of two trajectory-based methods, with the resulting hybrid algorithm exhibiting the advantages of both. An optimizing exchange algorithm is described which enables short feature paths to be tracked without prior knowledge of the motion being studied. The resulting partial trajectories are then used to initialize a fast predictor algorithm which is capable of rapidly tracking multiple feature paths. As this predictor algorithm becomes tuned to the feature positions being tracked, it is shown how the location of occluded or poorly detected features can be predicted. The results of applying this tracking algorithm to data obtained from real-world scenes are then presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the implementation, using a microprocessor, of a self-tuning control algorithm on a heating system. The algorithm is based on recursive least squares parameter estimation with a state-space, pole placement design criterion and shows how the controller behaves when applied to an actual system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An isotope dilution model for partitioning phenylalanine uptake by the liver of the lactating dairy cow was constructed and solved in the steady state. If assumptions are made, model solution permits calculation of the rate of phenylalanine uptake from portal vein and hepatic arterial blood supply, phenylalanine release into the hepatic vein, phenylalanine oxidation and synthesis, and degradation of hepatic constitutive and export proteins. The model requires the measurement of plasma fow rate through the liver in combination with phenylalanine concentrations and plateau isotopic enrichments in arterial, portal and hepatic plasma during a constant infusion of [1-13C]phenylalanine tracer. The model can be applied to other amino acids with similar metabolic fates and will provide a means for assessing the impact of hepatic metabolism on amino acid availability to peripheral tissues. This is of particular importance for the dairy cow when considering the requirements for milk protein synthesis and the negative environmental impact of excessive nitrogen excretion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an efficient strategy for mapping out the classical phase behavior of block copolymer systems using self-consistent field theory (SCFT). With our new algorithm, the complete solution of a classical block copolymer phase can be evaluated typically in a fraction of a second on a single-processor computer, even for highly segregated melts. This is accomplished by implementing the standard unit-cell approximation (UCA) for the cylindrical and spherical phases, and solving the resulting equations using a Bessel function expansion. Here the method is used to investigate blends of AB diblock copolymer and A homopolymer, concentrating on the situation where the two molecules are of similar size.

Relevância:

20.00% 20.00%

Publicador: