196 resultados para parallel linkage robot
Resumo:
This paper describes the integration of constrained predictive control and computed-torque control, and its application on a six degree-of-freedom PUMA 560 manipulator arm. The real-time implementation was based on SIMULINK, with the predictive controller and the computed-torque control law implemented in the C programming language. The constrained predictive controller solved a quadratic programming problem at every sampling interval, which was as short as 10 ms, using a prediction horizon of 150 steps and an 18th order state space model.
Resumo:
A glyconucleoside containing a thioglycoside linkage, namely 1-(3-S-beta-D-ribofuranosyl-2,3-dideoxy-3-thio-beta-D-ribofuranosyl)-thy mine, has been prepared through condensation of a suitably protected derivative of 3'-thiothymidine with an activated ribose sugar. NMR has been used to study the conformation of the S-disaccharide and the unmodified O-disaccharide. A full pseudorotational analysis showed that for the S-disaccharide, the ribose and deoxy ribose sugars have a preference for the south and north pucker, respectively; which is the reverse of what is seen for the O-disaccharide. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The robot control problem is discussed with regard to controller implementation on a multitransputer array. Some high-performance aspects required of such controllers are described, with particular reference to robot force control. The implications for the architecture required for controllers based on computed torque are discussed and an example is described. The idea of treating a transputer array as a virtual bus is put forward for the implementation of fast real-time controllers. An example is given of controlling a Puma 560 industrial robot. Some of the practical considerations for using transputers for such control are described.
Resumo:
Active robot force control requires some form of dynamic inner loop control for stability. The author considers the implementation of position-based inner loop control on an industrial robot fitted with encoders only. It is shown that high gain velocity feedback for such a robot, which is effectively stationary when in contact with a stiff environment, involves problems beyond the usual caveats on the effects of unknown environment stiffness. It is shown that it is possible for the controlled joint to become chaotic at very low velocities if encoder edge timing data are used for velocity measurement. The results obtained indicate that there is a lower limit on controlled velocity when encoders are the only means of joint measurement. This lower limit to speed is determined by the desired amount of loop gain, which is itself determined by the severity of the nonlinearities present in the drive system.
Resumo:
Both the (5,3) counter and (2,2,3) counter multiplication techniques are investigated for the efficiency of their operation speed and the viability of the architectures when implemented in a fast bipolar ECL technology. The implementation of the counters in series-gated ECL and threshold logic are contrasted for speed, noise immunity and complexity, and are critically compared with the fastest practical design of a full-adder. A novel circuit technique to overcome the problems of needing high fan-in input weights in threshold circuits through the use of negative weighted inputs is presented. The authors conclude that a (2,2,3) counter based array multiplier implemented in series-gated ECL should enable a significant increase in speed over conventional full adder based array multipliers.
Resumo:
The authors compare various array multiplier architectures based on (p,q) counter circuits. The tradeoff in multiplier design is always between adding complexity and increasing speed. It is shown that by using a (2,2,3) counter cell it is possible to gain a significant increase in speed over a conventional full-adder, carry-save array based approach. The increase in complexity should be easily accommodated using modern emitter-coupled-logic processes.
Resumo:
Soft skin artefacts made of knitted nylon reinforced silicon rubber were fabricated mimicking octopus skin. A combination of ecoflex 0030 and 0010 were used as matrix of the composite to obtain the right stiffness for the skin artefacts. Material properties were characterised using static uniaxial tension and scissors cutting tests. Two types of tactile sensors were developed to detect normal contact; one used quantum tunnelling composite materials and the second was fabricated from silicone rubber and a conductive textile. Sensitivities of the sensors were tested by applying different modes of loading and the soft sensors were incorporated into the skin prototype. Passive suckers were developed and tested against squid suckers. An integrated skin prototype with embedded deformable sensors and attached suckers developed for the arm of an octopus inspired robot is also presented.
Resumo:
Background A whole-genome genotyping array has previously been developed for Malus using SNP data from 28 Malus genotypes. This array offers the prospect of high throughput genotyping and linkage map development for any given Malus progeny. To test the applicability of the array for mapping in diverse Malus genotypes, we applied the array to the construction of a SNPbased linkage map of an apple rootstock progeny. Results Of the 7,867 Malus SNP markers on the array, 1,823 (23.2 %) were heterozygous in one of the two parents of the progeny, 1,007 (12.8 %) were heterozygous in both parental genotypes, whilst just 2.8 % of the 921 Pyrus SNPs were heterozygous. A linkage map spanning 1,282.2 cM was produced comprising 2,272 SNP markers, 306 SSR markers and the S-locus. The length of the M432 linkage map was increased by 52.7 cM with the addition of the SNP markers, whilst marker density increased from 3.8 cM/marker to 0.5 cM/marker. Just three regions in excess of 10 cM remain where no markers were mapped. We compared the positions of the mapped SNP markers on the M432 map with their predicted positions on the ‘Golden Delicious’ genome sequence. A total of 311 markers (13.7 % of all mapped markers) mapped to positions that conflicted with their predicted positions on the ‘Golden Delicious’ pseudo-chromosomes, indicating the presence of paralogous genomic regions or misassignments of genome sequence contigs during the assembly and anchoring of the genome sequence. Conclusions We incorporated data for the 2,272 SNP markers onto the map of the M432 progeny and have presented the most complete and saturated map of the full 17 linkage groups of M. pumila to date. The data were generated rapidly in a high-throughput semi-automated pipeline, permitting significant savings in time and cost over linkage map construction using microsatellites. The application of the array will permit linkage maps to be developed for QTL analyses in a cost-effective manner, and the identification of SNPs that have been assigned erroneous positions on the ‘Golden Delicious’ reference sequence will assist in the continued improvement of the genome sequence assembly for that variety.
Resumo:
In a world where massive amounts of data are recorded on a large scale we need data mining technologies to gain knowledge from the data in a reasonable time. The Top Down Induction of Decision Trees (TDIDT) algorithm is a very widely used technology to predict the classification of newly recorded data. However alternative technologies have been derived that often produce better rules but do not scale well on large datasets. Such an alternative to TDIDT is the PrismTCS algorithm. PrismTCS performs particularly well on noisy data but does not scale well on large datasets. In this paper we introduce Prism and investigate its scaling behaviour. We describe how we improved the scalability of the serial version of Prism and investigate its limitations. We then describe our work to overcome these limitations by developing a framework to parallelise algorithms of the Prism family and similar algorithms. We also present the scale up results of a first prototype implementation.
Resumo:
The Distributed Rule Induction (DRI) project at the University of Portsmouth is concerned with distributed data mining algorithms for automatically generating rules of all kinds. In this paper we present a system architecture and its implementation for inducing modular classification rules in parallel in a local area network using a distributed blackboard system. We present initial results of a prototype implementation based on the Prism algorithm.
Resumo:
In a world where data is captured on a large scale the major challenge for data mining algorithms is to be able to scale up to large datasets. There are two main approaches to inducing classification rules, one is the divide and conquer approach, also known as the top down induction of decision trees; the other approach is called the separate and conquer approach. A considerable amount of work has been done on scaling up the divide and conquer approach. However, very little work has been conducted on scaling up the separate and conquer approach.In this work we describe a parallel framework that allows the parallelisation of a certain family of separate and conquer algorithms, the Prism family. Parallelisation helps the Prism family of algorithms to harvest additional computer resources in a network of computers in order to make the induction of classification rules scale better on large datasets. Our framework also incorporates a pre-pruning facility for parallel Prism algorithms.
Resumo:
The fast increase in the size and number of databases demands data mining approaches that are scalable to large amounts of data. This has led to the exploration of parallel computing technologies in order to perform data mining tasks concurrently using several processors. Parallelization seems to be a natural and cost-effective way to scale up data mining technologies. One of the most important of these data mining technologies is the classification of newly recorded data. This paper surveys advances in parallelization in the field of classification rule induction.
Resumo:
Generally classifiers tend to overfit if there is noise in the training data or there are missing values. Ensemble learning methods are often used to improve a classifier's classification accuracy. Most ensemble learning approaches aim to improve the classification accuracy of decision trees. However, alternative classifiers to decision trees exist. The recently developed Random Prism ensemble learner for classification aims to improve an alternative classification rule induction approach, the Prism family of algorithms, which addresses some of the limitations of decision trees. However, Random Prism suffers like any ensemble learner from a high computational overhead due to replication of the data and the induction of multiple base classifiers. Hence even modest sized datasets may impose a computational challenge to ensemble learners such as Random Prism. Parallelism is often used to scale up algorithms to deal with large datasets. This paper investigates parallelisation for Random Prism, implements a prototype and evaluates it empirically using a Hadoop computing cluster.