210 resultados para Seasonal Adaptation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Centennial-scale records of sea-surface temperature and opal composition spanning the Last Glacial Maximum and Termination 1 (circa 25–6 ka) are presented here from Guaymas Basin in the Gulf of California. Through the application of two organic geochemistry proxies, the U37K′ index and the TEX86H index, we present evidence for rapid, stepped changes in temperatures during deglaciation. These occur in both temperature proxies at 13 ka (∼3°C increase in 270 years), 10.0 ka (∼2°C decrease over ∼250 years) and at 8.2 ka (3°C increase in <200 years). An additional rapid warming step is also observed in TEX86H at 11.5 ka. In comparing the two temperature proxies and opal content, we consider the potential for upwelling intensity to be recorded and link this millennial-scale variability to shifting Intertropical Convergence Zone position and variations in the strength of the Subtropical High. The onset of the deglacial warming from 17 to 18 ka is comparable to a “southern hemisphere” signal, although the opal record mimics the ice-rafting events of the north Atlantic (Heinrich events). Neither the modern seasonal cycle nor El Niño/Southern Oscillation patterns provide valid analogues for the trends we observe in comparison with other regional records. Fully coupled climate model simulations confirm this result, and in combination we question whether the seasonal or interannual climate variations of the modern climate are valid analogues for the glacial and deglacial tropical Pacific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Useful probabilistic climate forecasts on decadal timescales should be reliable (i.e. forecast probabilities match the observed relative frequencies) but this is seldom examined. This paper assesses a necessary condition for reliability, that the ratio of ensemble spread to forecast error being close to one, for seasonal to decadal sea surface temperature retrospective forecasts from the Met Office Decadal Prediction System (DePreSys). Factors which may affect reliability are diagnosed by comparing this spread-error ratio for an initial condition ensemble and two perturbed physics ensembles for initialized and uninitialized predictions. At lead times less than 2 years, the initialized ensembles tend to be under-dispersed, and hence produce overconfident and hence unreliable forecasts. For longer lead times, all three ensembles are predominantly over-dispersed. Such over-dispersion is primarily related to excessive inter-annual variability in the climate model. These findings highlight the need to carefully evaluate simulated variability in seasonal and decadal prediction systems.Useful probabilistic climate forecasts on decadal timescales should be reliable (i.e. forecast probabilities match the observed relative frequencies) but this is seldom examined. This paper assesses a necessary condition for reliability, that the ratio of ensemble spread to forecast error being close to one, for seasonal to decadal sea surface temperature retrospective forecasts from the Met Office Decadal Prediction System (DePreSys). Factors which may affect reliability are diagnosed by comparing this spread-error ratio for an initial condition ensemble and two perturbed physics ensembles for initialized and uninitialized predictions. At lead times less than 2 years, the initialized ensembles tend to be under-dispersed, and hence produce overconfident and hence unreliable forecasts. For longer lead times, all three ensembles are predominantly over-dispersed. Such over-dispersion is primarily related to excessive inter-annual variability in the climate model. These findings highlight the need to carefully evaluate simulated variability in seasonal and decadal prediction systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – The development of marketing strategies optimally adjusted to export markets has been a vitally important topic for both managers and academics for about five decades. However, there is no agreement in the literature about which elements integrate marketing strategy and which components of domestic strategies should be adapted to export markets. The purpose of this paper is to develop a new scale – STRATADAPT. Design/methodology/approach – Results from a sample of small and medium-sized industrial exporting firms support a four-dimensional scale – product, promotion, price, and distribution strategies – of 30 items. The scale presents evidence of composite reliability as well as discriminant and nomological validity. Findings – Findings reveal that all four dimensions of marketing strategy adaptation are positively associated with the amount of the firm's financial resources allocated to export activity. Practical implications – The STRATADAPT scale may assist managers in developing better international marketing strategies as well as in planning more accurate and efficient marketing programs across markets. Originality/value – This study develops a new scale, the STRATADAPT scale, which is a broad measure of export marketing strategy adaptation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The CWRF is developed as a climate extension of the Weather Research and Forecasting model (WRF) by incorporating numerous improvements in the representation of physical processes and integration of external (top, surface, lateral) forcings that are crucial to climate scales, including interactions between land, atmosphere, and ocean; convection and microphysics; and cloud, aerosol, and radiation; and system consistency throughout all process modules. This extension inherits all WRF functionalities for numerical weather prediction while enhancing the capability for climate modeling. As such, CWRF can be applied seamlessly to weather forecast and climate prediction. The CWRF is built with a comprehensive ensemble of alternative parameterization schemes for each of the key physical processes, including surface (land, ocean), planetary boundary layer, cumulus (deep, shallow), microphysics, cloud, aerosol, and radiation, and their interactions. This facilitates the use of an optimized physics ensemble approach to improve weather or climate prediction along with a reliable uncertainty estimate. The CWRF also emphasizes the societal service capability to provide impactrelevant information by coupling with detailed models of terrestrial hydrology, coastal ocean, crop growth, air quality, and a recently expanded interactive water quality and ecosystem model. This study provides a general CWRF description and basic skill evaluation based on a continuous integration for the period 1979– 2009 as compared with that of WRF, using a 30-km grid spacing over a domain that includes the contiguous United States plus southern Canada and northern Mexico. In addition to advantages of greater application capability, CWRF improves performance in radiation and terrestrial hydrology over WRF and other regional models. Precipitation simulation, however, remains a challenge for all of the tested models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate model ensembles are widely heralded for their potential to quantify uncertainties and generate probabilistic climate projections. However, such technical improvements to modeling science will do little to deliver on their ultimate promise of improving climate policymaking and adaptation unless the insights they generate can be effectively communicated to decision makers. While some of these communicative challenges are unique to climate ensembles, others are common to hydrometeorological modeling more generally, and to the tensions arising between the imperatives for saliency, robustness, and richness in risk communication. The paper reviews emerging approaches to visualizing and communicating climate ensembles and compares them to the more established and thoroughly evaluated communication methods used in the numerical weather prediction domains of day-to-day weather forecasting (in particular probabilities of precipitation), hurricane and flood warning, and seasonal forecasting. This comparative analysis informs recommendations on best practice for climate modelers, as well as prompting some further thoughts on key research challenges to improve the future communication of climate change uncertainties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Efficacy of endocrine therapy is compromised when human breast cancer cells circumvent imposed growth inhibition. The model of long-term oestrogen-deprived MCF-7 human breast cancer cells has suggested the mechanism results from hypersensitivity to low levels of residual oestrogen. Materials and methods: MCF-7 cells were maintained for up to 30 weeks in phenol-red-free medium and charcoal-stripped serum with 10-8 M 17-oestradiol and 10 g/ml insulin (stock 1), 10-8 M 17-oestradiol (stock 2), 10 g/ml insulin (stock 3) or no addition (stock 4). Results: Loss of growth response to oestrogen was observed only in stock 4 cells. Long-term maintenance with insulin in the absence of oestradiol (stock 3) resulted in raised oestrogen receptor alpha (ERlevels (measured by western immunoblotting) and development of hypersensitivity (assayed by oestrogen-responsive reporter gene induction and dose response to oestradiol for proliferation under serum-free conditions), but with no loss of growth response to oestrogen. Conclusion: Hypersensitivity can develop without any growth adaptation and therefore is not a prerequisite for loss of growth response in MCF-7 cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Useful probabilistic climate forecasts on decadal timescales should be reliable (i.e. forecast probabilities match the observed relative frequencies) but this is seldom examined. This paper assesses a necessary condition for reliability, that the ratio of ensemble spread to forecast error being close to one, for seasonal to decadal sea surface temperature retrospective forecasts from the Met Office Decadal Prediction System (DePreSys). Factors which may affect reliability are diagnosed by comparing this spread-error ratio for an initial condition ensemble and two perturbed physics ensembles for initialized and uninitialized predictions. At lead times less than 2 years, the initialized ensembles tend to be under-dispersed, and hence produce overconfident and hence unreliable forecasts. For longer lead times, all three ensembles are predominantly over-dispersed. Such over-dispersion is primarily related to excessive inter-annual variability in the climate model. These findings highlight the need to carefully evaluate simulated variability in seasonal and decadal prediction systems.Useful probabilistic climate forecasts on decadal timescales should be reliable (i.e. forecast probabilities match the observed relative frequencies) but this is seldom examined. This paper assesses a necessary condition for reliability, that the ratio of ensemble spread to forecast error being close to one, for seasonal to decadal sea surface temperature retrospective forecasts from the Met Office Decadal Prediction System (DePreSys). Factors which may affect reliability are diagnosed by comparing this spread-error ratio for an initial condition ensemble and two perturbed physics ensembles for initialized and uninitialized predictions. At lead times less than 2 years, the initialized ensembles tend to be under-dispersed, and hence produce overconfident and hence unreliable forecasts. For longer lead times, all three ensembles are predominantly over-dispersed. Such over-dispersion is primarily related to excessive inter-annual variability in the climate model. These findings highlight the need to carefully evaluate simulated variability in seasonal and decadal prediction systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We establish the first inter-model comparison of seasonal to interannual predictability of present-day Arctic climate by performing coordinated sets of idealized ensemble predictions with four state-of-the-art global climate models. For Arctic sea-ice extent and volume, there is potential predictive skill for lead times of up to three years, and potential prediction errors have similar growth rates and magnitudes across the models. Spatial patterns of potential prediction errors differ substantially between the models, but some features are robust. Sea-ice concentration errors are largest in the marginal ice zone, and in winter they are almost zero away from the ice edge. Sea-ice thickness errors are amplified along the coasts of the Arctic Ocean, an effect that is dominated by sea-ice advection. These results give an upper bound on the ability of current global climate models to predict important aspects of Arctic climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The composition and physical properties of raw milk from a commercial herd were studied over a one year period in order to understand how best to utilise milk for processing throughout the year. Protein and fat levels demonstrated seasonal trends, while minerals and many physical properties displayed considerable variations, which were apparently unrelated to season. However, rennet clotting time, ethanol stability and foaming ability were subject to seasonal variation. Many significant interrelationships in physico-chemical properties were found. It is clear that the milk supply may be more suited to the manufacture of different products at different times of the year or even on a day to day basis. Subsequent studies will report on variation in production and quality of products manufactured from the same milk samples described in the current study and will thus highlight potential advantages of seasonal processing of raw milk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Why are some states more willing to adopt military innovations than others? Why, for example, were the great powers of Europe able to successfully reform their military practices to better adapt to and participate in the so-called military revolution of the sixteenth and seventeenth centuries while their most important extra-European competitor, the Ottoman Empire, failed to do so? This puzzle is best explained by two factors: civil-military relations and historical timing. In the Ottoman Empire, the emergence of an institutionally strong and internally cohesive army during the early stages of state formation—in the late fourteenth century—equipped the military with substantial bargaining powers. In contrast, the great powers of Europe drew heavily on private providers of military power during the military revolution and developed similar armies only by the second half of the seventeenth century, limiting the bargaining leverage of European militaries over their rulers. In essence, the Ottoman standing army was able to block reform efforts that it believed challenged its parochial interests. Absent a similar institutional challenge, European rulers initiated military reforms and motivated officers and military entrepreneurs to participate in the ongoing military revolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular mechanisms regulating the flowering process have been extensively studied in model annual plants; in perennials, however, understanding of the molecular mechanisms controlling flowering has just started to emerge. Here we review the current state of flowering research in perennial plants of the rose family (Rosaceae), which is one of the most economically important families of horticultural plants. Strawberry (Fragaria spp.), raspberry (Rubus spp.), rose (Rosa spp.), and apple (Malus spp.) are used to illustrate how photoperiod and temperature control seasonal flowering in rosaceous crops. We highlight recent molecular studies which have revealed homologues of TERMINAL FLOWER1 (TFL1) to be major regulators of both the juvenile to adult, and the vegetative to reproductive transitions in various rosaceous species. Additionally, recent advances in understanding of the regulation of TFL1 are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The animal gastrointestinal tract houses a large microbial community, the gut microbiota, that confers many benefits to its host, such as protection from pathogens and provision of essential metabolites. Metagenomic approaches have defined the chicken fecal microbiota in other studies, but here, we wished to assess the correlation between the metagenome and the bacterial proteome in order to better understand the healthy chicken gut microbiota. Here, we performed high-throughput sequencing of 16S rRNA gene amplicons and metaproteomics analysis of fecal samples to determine microbial gut composition and protein expression. 16 rRNA gene sequencing analysis identified Clostridiales, Bacteroidaceae, and Lactobacillaceae species as the most abundant species in the gut. For metaproteomics analysis, peptides were generated by using the Fasp method and subsequently fractionated by strong anion exchanges. Metaproteomics analysis identified 3,673 proteins. Among the most frequently identified proteins, 380 proteins belonged to Lactobacillus spp., 155 belonged to Clostridium spp., and 66 belonged to Streptococcus spp. The most frequently identified proteins were heat shock chaperones, including 349 GroEL proteins, from many bacterial species, whereas the most abundant enzymes were pyruvate kinases, as judged by the number of peptides identified per protein (spectral counting). Gene ontology and KEGG pathway analyses revealed the functions and locations of the identified proteins. The findings of both metaproteomics and 16S rRNA sequencing analyses are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sea ice plays a crucial role in the earth's energy and water budget and substantially impacts local and remote atmospheric and oceanic circulations. Predictions of Arctic sea ice conditions a few months to a few years in advance could be of interest for stakeholders. This article presents a review of the potential sources of Arctic sea ice predictability on these timescales. Predictability mainly originates from persistence or advection of sea ice anomalies, interactions with the ocean and atmosphere and changes in radiative forcing. After estimating the inherent potential predictability limit with state-of-the-art models, current sea ice forecast systems are described, together with their performance. Finally, some challenges and issues in sea ice forecasting are presented, along with suggestions for future research priorities.