203 resultados para Milk producer
Resumo:
The composition and physical properties of raw milk from a commercial herd were studied over a one year period in order to understand how best to utilise milk for processing throughout the year. Protein and fat levels demonstrated seasonal trends, while minerals and many physical properties displayed considerable variations, which were apparently unrelated to season. However, rennet clotting time, ethanol stability and foaming ability were subject to seasonal variation. Many significant interrelationships in physico-chemical properties were found. It is clear that the milk supply may be more suited to the manufacture of different products at different times of the year or even on a day to day basis. Subsequent studies will report on variation in production and quality of products manufactured from the same milk samples described in the current study and will thus highlight potential advantages of seasonal processing of raw milk.
Resumo:
Implications Overall, milk consumption provides health benefits to all age groups. Effects of cheese, butter, and fat-reduced and saturated fat-reduced milk and dairy products are less clear and require more research. Public health nutrition policy related to milk consumption should be based on the evidence presented and not solely on the believed negative effects of dietary fat. Milk is not a white elixir since no study has reported eternal youth from drinking it, but there is certainly no evidence that milk is a white poison!
Resumo:
The aim of this study was to investigate the effects of numerous milk compositional factors on milk coagulation properties using Partial Least Squares (PLS). Milk from herds of Jersey and Holstein-Friesian cattle was collected across the year and blended (n=55), to maximize variation in composition and coagulation. The milk was analysed for casein, protein, fat, titratable acidity, lactose, Ca2+, urea content, micelles size, fat globule size, somatic cell count and pH. Milk coagulation properties were defined as coagulation time, curd firmness and curd firmness rate measured by a controlled strain rheometer. The models derived from PLS had higher predictive power than previous models demonstrating the value of measuring more milk components. In addition to the well-established relationships with casein and protein levels, CMS and fat globule size were found to have as strong impact on all of the three models. The study also found a positive impact of fat on milk coagulation properties and a strong relationship between lactose and curd firmness, and urea and curd firmness rate, all of which warrant further investigation due to current lack of knowledge of the underlying mechanism. These findings demonstrate the importance of using a wider range of milk compositional variable for the prediction of the milk coagulation properties, and hence as indicators of milk suitability for cheese making.
Resumo:
Whipping cream, skim milk powder and soft cheese were produced throughout the year. Whipping cream manufactured in spring and winter produced significantly higher overrun and better serum stability, and whipping time was related to buffering capacity of raw milk. Heat stability of reconstituted skim milk powder (RSMP) at 9% TS was greater in summer and autumn, and greater than 25% TS throughout the year. It was positively related to the protein content of raw milk, but negatively with fat. In contrast to other dairy products, no significant effect of season on the properties of soft cheese was found.
Resumo:
Various studies have indicated a relationship between enteric methane (CH4) production and milk fatty acid (FA) profiles of dairy cattle. However, the number of studies investigating such a relationship is limited and the direct relationships reported are mainly obtained by variation in CH4 production and milk FA concentration induced by dietary lipid supplements. The aim of this study was to perform a meta-analysis to quantify relationships between CH4 yield (per unit of feed and unit of milk) and milk FA profile in dairy cattle and to develop equations to predict CH4 yield based on milk FA profile of cows fed a wide variety of diets. Data from 8 experiments encompassing 30 different dietary treatments and 146 observations were included. Yield of CH4 measured in these experiments was 21.5 ± 2.46 g/kg of dry matter intake (DMI) and 13.9 ± 2.30 g/ kg of fat- and protein-corrected milk (FPCM). Correlation coefficients were chosen as effect size of the relationship between CH4 yield and individual milk FA concentration (g/100 g of FA). Average true correlation coefficients were estimated by a random-effects model. Milk FA concentrations of C6:0, C8:0, C10:0, C16:0, and C16:0-iso were significantly or tended to be positively related to CH4 yield per unit of feed. Concentrations of trans-6+7+8+9 C18:1, trans-10+11 C18:1, cis- 11 C18:1, cis-12 C18:1, cis-13 C18:1, trans-16+cis-14 C18:1, and cis-9,12 C18:2 in milk fat were significantly or tended to be negatively related to CH4 yield per unit of feed. Milk FA concentrations of C10:0, C12:0, C14:0-iso, C14:0, cis-9 C14:1, C15:0, and C16:0 were significantly or tended to be positively related to CH4 yield per unit of milk. Concentrations of C4:0, C18:0, trans-10+11 C18:1, cis-9 C18:1, cis-11 C18:1, and cis- 9,12 C18:2 in milk fat were significantly or tended to be negatively related to CH4 yield per unit of milk. Mixed model multiple regression and a stepwise selection procedure of milk FA based on the Bayesian information criterion to predict CH4 yield with milk FA as input (g/100 g of FA) resulted in the following prediction equations: CH4 (g/kg of DMI) = 23.39 + 9.74 × C16:0- iso – 1.06 × trans-10+11 C18:1 – 1.75 × cis-9,12 C18:2 (R2 = 0.54), and CH4 (g/kg of FPCM) = 21.13 – 1.38 × C4:0 + 8.53 × C16:0-iso – 0.22 × cis-9 C18:1 – 0.59 × trans-10+11 C18:1 (R2 = 0.47). This indicated that milk FA profile has a moderate potential for predicting CH4 yield per unit of feed and a slightly lower potential for predicting CH4 yield per unit of milk. Key words: methane , milk fatty acid profile , metaanalysis , dairy cattle
Resumo:
The aim of this study was to investigate the effects of numerous milk compositional factors on milk coagulation properties using Partial Least Squares (PLS). Milk from herds of Jersey and Holstein- Friesian cattle was collected across the year and blended (n=55), to maximise variation in composition and coagulation. The milk was analysed for casein, protein, fat, titratable acidity, lactose, Ca2+, urea content, micelles size, fat globule size, somatic cell count and pH. Milk coagulation properties were defined as coagulation time, curd firmness and curd firmness rate measured by a controlled strain rheometer. The models derived from PLS had higher predictive power than previous models demonstrating the value of measuring more milk components. In addition to the well-established relationships with casein and protein levels, CMS and fat globule size were found to have as strong impact on all of the three models. The study also found a positive impact of fat on milk coagulation properties and a strong relationship between lactose and curd firmness, and urea and curd firmness rate, all of which warrant further investigation due to current lack of knowledge of the underlying mechanism. These findings demonstrate the importance of using a wider range of milk compositional variables for the prediction of the milk coagulation properties, and hence as indicators of milk suitability for cheese making.
Resumo:
Research and commercial interest in the genus Bifidobacterium have increased in the last decade due to their potential health benefits in probiotic functional foods, especially in dairy products. However, cultivation of bifidobacteria in milk is a difficult task compared with that of conventional starters because milk is not a good medium for growth of these nutritionally fastidious microorganisms. Therefore, suitable strains of Bifidobacterium for dairy products should be selected based on their safety and technological and functional properties. There are a number of milk products containing bifidobacteria in the world market and the demand for new products is increasing with the awareness of the potential health benefits of the consumption of products blended with bifidobacteria. Some strains of Bifidobacterium, which produce exopolysaccharide, have been isolated and characterised. This review will discuss the general characteristics of bifidobacteria, exopolysaccharide production, the selection criteria of bacterial strains for milk products, current applications of bifidobacteria in milk products, and their nutritional and beneficial health properties.
Resumo:
Milk is the largest source of iodine in UK diets and an earlier study showed that organic summer milk had significantly lower iodine concentration than conventional milk. There are no comparable studies with winter milk or the effect of milk fat class or heat processing method. Two retail studies with winter milk are reported. Study 1 showed no effect of fat class but organic milk was 32.2% lower in iodine than conventional milk (404 vs. 595 μg/L; P < 0.001). Study 2 found no difference between conventional and Channel Island milk but organic milk contained 35.5% less iodine than conventional milk (474 vs. 306 μg/L; P < 0.001). UHT and branded organic milk also had lower iodine concentrations than conventional milk (331 μg/L; P < 0.001 and 268 μg/L: P < 0.0001 respectively). The results indicate that replacement of conventional milk by organic or UHT milk will increase the risk of sub-optimal iodine status especially for pregnant/lactating women.
Resumo:
The importance of milk in the human diet as a supplier of energy, high quality protein and other key nutrients, including calcium, is broadly accepted yet in the mind of many there remains uncertainty about whether or not these foods contribute to increased risk of cardiovascular and other chronic diseases. The evidence from long term prospective cohort studies that high milk consumption does not increase cardiovascular disease risk and indeed may provide benefit is now pretty unequivocal, although the effects of butter and cheese and benefits of fat reduced milk and saturated fat reduced milk are less certain. Milk is a crucial supplier of calcium, phosphorus and magnesium for bone growth and development in children and it is concerning that due to reduced milk consumption intake of these nutrients is often sub-optimal, particularly for female children. In addition, specific health issues in pregnant women and the elderly can be alleviated by milk or components of milk and these effects are not all explained by traditional nutrition.
Resumo:
Heat stability was evaluated in bulk raw milk, collected throughout the year and subjected to ultra-high temperature (UHT) or in-container sterilisation, with and without added calcium chloride (2 mM), disodium hydrogen phosphate (DSHP, 10 mM) and trisodium citrate (TSC, 10 mM). More sediment was observed following in-container sterilisation (0.24%) compared with UHT (0.19%). Adding CaCl2 made the milk more unstable to UHT than to in-container sterilisation, while adding DSHP and TSC made the milk more unstable during in-container sterilisation than to UHT processing, although TSC addition increased the sediment formed by UHT processing. Better heat stability was observed in autumn and winter than in spring and summer following UHT. However, following in-container sterilisation, samples with added stabilising salts showed significantly improved heat stability in autumn, whereas with added CaCl2, the best heat stability was observed in spring. No correlation was found between urea and heat stability. DSHP and TSC made the milk more unstable during in-container sterilisation than to UHT processing, although TSC addition increased the sediment formed by UHT processing. Better heat stability was observed in autumn and winter than in spring and summer following UHT. However, following in-container sterilisation, samples with added stabilising salts showed significantly improved heat stability in autumn, whereas with added CaCl2, the best heat stability was observed in spring. No correlation was found between urea and heat stability.
Resumo:
Replacing dietary grass silage (GS) with maize silage (MS) and dietary fat supplements may reduce milk concentration of specific saturated fatty acids (SFA) and can reduce methane production by dairy cows. The present study investigated the effect of feeding an extruded linseed supplement on milk fatty acid (FA) composition and methane production of lactating dairy cows, and whether basal forage type, in diets formulated for similar neutral detergent fiber and starch, altered the response to the extruded linseed supplement. Four mid-lactation Holstein-Friesian cows were fed diets as total mixed rations, containing either high proportions of MS or GS, both with or without extruded linseed supplement, in a 4 × 4 Latin square design experiment with 28-d periods. Diets contained 500 g of forage/kg of dry matter (DM) containing MS and GS in proportions (DM basis) of either 75:25 or 25:75 for high MS or high GS diets, respectively. Extruded linseed supplement (275 g/kg ether extract, DM basis) was included in treatment diets at 50 g/kg of DM. Milk yields, DM intake, milk composition, and methane production were measured at the end of each experimental period when cows were housed in respiration chambers. Whereas DM intake was higher for the MS-based diet, forage type and extruded linseed had no significant effect on milk yield, milk fat, protein, or lactose concentration, methane production, or methane per kilogram of DM intake or milk yield. Total milk fat SFA concentrations were lower with MS compared with GS-based diets (65.4 vs. 68.4 g/100 g of FA, respectively) and with extruded linseed compared with no extruded linseed (65.2 vs. 68.6 g/100 g of FA, respectively), and these effects were additive. Concentrations of total trans FA were higher with MS compared with GS-based diets (7.0 vs. 5.4 g/100 g of FA, respectively) and when extruded linseed was fed (6.8 vs. 5.6 g/100 g of FA, respectively). Total n-3 FA were higher when extruded linseed was fed compared with no extruded linseed (1.2 vs. 0.8 g/100 g of FA, respectively), whereas total n-6 polyunsaturated FA were higher when feeding MS compared with GS (2.5 vs. 2.1 g/100 g of FA, respectively). Feeding extruded linseed and MS both provided potentially beneficial decreases in SFA concentration of milk, and no significant interactions were found between extruded linseed supplementation and forage type. However, both MS and extruded linseed increased trans FA concentration in milk fat. Neither MS nor extruded linseed had significant effects on methane production or yield, but the amounts of supplemental lipid provided by extruded linseed were relatively small.
Jersey milk suitability for Cheddar cheese production: process, yield, quality and financial impacts
Resumo:
The aim of this study was to first evaluate the benefits of including Jersey milk into Holstein-Friesian milk on the Cheddar cheese making process and secondly, using the data gathered, identify the effects and relative importance of a wide range of milk components on milk coagulation properties and the cheese making process. Blending Jersey and Holstein-Friesian milk led to quadratic trends on the size of casein micelle and fat globule and on coagulation properties. However this was not found to affect the cheese making process. Including Jersey milk was found, on a pilot scale, to increase cheese yield (up to + 35 %) but it did not affect cheese quality, which was defined as compliance with the legal requirements of cheese composition, cheese texture, colour and grading scores. Profitability increased linearly with the inclusion of Jersey milk (up to 11.18 p£ L-1 of milk). The commercial trials supported the pilot plant findings, demonstrating that including Jersey milk increased cheese yield without having a negative impact on cheese quality, despite the inherent challenges of scaling up such a process commercially. The successful use of a large array of milk components to model the cheese making process challenged the commonly accepted view that fat, protein and casein content and protein to fat ratio are the main contributors to the cheese making process as other components such as the size of casein micelle and fat globule were found to also play a key role with small casein micelle and large fat globule reducing coagulation time, improving curd firmness, fat recovery and influencing cheese moisture and fat content. The findings of this thesis indicated that milk suitability for Cheddar making could be improved by the inclusion of Jersey milk and that more compositional factors need to be taken into account when judging milk suitability.
Resumo:
Nutrient enrichment and drought conditions are major threats to lowland rivers causing ecosystem degradation and composition changes in plant communities. The controls on primary producer composition in chalk rivers are investigated using a new model and existing data from the River Frome (UK) to explore abiotic and biotic interactions. The growth and interaction of four primary producer functional groups (suspended algae, macrophytes, epiphytes, sediment biofilm) were successfully linked with flow, nutrients (N, P), light and water temperature such that the modelled biomass dynamics of the four groups matched that of the observed. Simulated growth of suspended algae was limited mainly by the residence time of the river rather than in-stream phosphorus concentrations. The simulated growth of the fixed vegetation (macrophytes, epiphytes, sediment biofilm) was overwhelmingly controlled by incoming solar radiation and light attenuation in the water column. Nutrients and grazing have little control when compared to the other physical controls in the simulations. A number of environmental threshold values were identified in the model simulations for the different producer types. The simulation results highlighted the importance of the pelagic–benthic interactions within the River Frome and indicated that process interaction defined the behaviour of the primary producers, rather than a single, dominant driver. The model simulations pose interesting questions to be considered in the next iteration of field- and laboratory based studies.