304 resultados para Lockwood (tavaramerkki)
Resumo:
Dayside poleward moving auroral forms (PMAFs) were detected between 06:30 and 07:00 UT on December 16, 1998, by the meridian scanning photometer and the all-sky camera at Ny Alesund, Svalbard. Simultaneous SuperDARN HF radar measurements permitted the study of the associated ionospheric velocity pattern. A good general agreement is observed between the location and movement of velocity enhancements (flow channels) and the PMAFs. Clear signatures of equatorward flow were detected in the vicinity of PMAFs. This flow is believed to be the signature of a return flow outside the reconnected Aux tube, as predicted by the Southwood model. The simulated signatures of this model reproduce globally the measured signatures, and differences with the experimental data can be explained by the simplifications of the model. Proposed schemes of the flow modification due to the presence of several flow channels and the modification of cusp and region 1 field-aligned currents at the time of sporadic reconnection events are shown to fit well with the observations.
Resumo:
We report high-resolution observations of the southward-IMF cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter) Svalbard radar (ESR), and compare them with observations of dayside auroral luminosity, as seen at a wavelength of 630 nm by a meridian scanning photometer at Ny Alesund, and of plasma flows, as seen by the CUTLASS (co-operative UK twin location auroral sounding system) Finland HF radar. The optical data reveal a series of poleward-moving transient red-line (630 nm) enhancements, events that have been associated with bursts in the rate of magnetopause reconnection generating new open flux. The combined observations at this time have strong similarities to predictions of the effects of soft electron precipitation modulated by pulsed reconnection, as made by Davis and Lockwood (1996); however, the effects of rapid zonal flow in the ionosphere, caused by the magnetic curvature force on the newly opened field lines, are found to be a significant additional factor. In particular, it is shown how enhanced plasma loss rates induced by the rapid convection can explain two outstanding anomalies of the 630 nm transients, namely how minima in luminosity form between the poleward-moving events and how events can re-brighten as they move poleward. The observations show how cusp/cleft aurora and transient poleward-moving auroral forms appear in the ESR data and the conditions which cause enhanced 630 nm emission in the transients: they are an important first step in enabling the ESR to identify these features away from the winter solstice when supporting auroral observations are not available.
Resumo:
Swept-frequency (1-10 MHz) ionosonde measurements were made at Helston, Cornwall (50 degrees 06'N, 5 degrees 18'W) during the total solar eclipse on August 11, 1999. Soundings were made every three minutes. We present a method for estimating the percentage of the ionising solar radiation which remains unobscured at any time during the eclipse by comparing the variation of the ionospheric E-layer with the behaviour of the layer during a control day. Application to the ionosonde date for II August, 1999, shows that the flux of solar ionising radiation fell to a minimum of 25 +/- 2% of the value before and after the eclipse. For comparison, the same technique was also applied to measurements made during the total solar eclipse of 9 July, 1945, at Sormjole (63 degrees 68'N, 20 degrees 20'E) and yielded a corresponding minimum of 16 +/- 2%. Therefore the method can detect variations in the fraction of solar emissions that originate from the unobscured corona and chromosphere. We discuss the differences between these two eclipses in terms of the nature of the eclipse, short-term fluctuations, the sunspot cycle and the recently-discovered long-term change in the coronal magnetic field.
Resumo:
On 7 December 1992, a moderate substorm was observed by a variety of satellites and ground-based instruments. Ionospheric flows were monitored near dusk by the Goose Bay HF radar and near midnight by the EISCAT radar. The observed flows are compared here with magnetometer observations by the IMAGE array in Scandinavia and the two Greenland chains, the auroral distribution observed by Freja and the substorm cycle observations by the SABRE radar, the SAMNET magnetometer array and LANL geosynchronous satellites. Data from Galileo Earth-encounter II are used to estimate the IMF B-z component. The data presented show that the substorm onset electrojet at midnight was confined to closed field lines equatorward of the preexisting convection reversal boundaries observed in the dusk and midnight regions. No evidence of substantial closure of open flux was detected following this substorm onset. Indeed the convection reversal boundary on the duskside continued to expand equatorward after onset due to the continued presence of strong southward IMF, such that growth and expansion phase features were simultaneously present. Clear indications of closure of open flux were not observed until a subsequent substorm intensification 25 min after the initial onset. After this time, the substorm auroral bulge in the nightside hours propagated well poleward of the pre-existing convection reversal boundary, and strong flow perturbations were observed by the Goose Bay radar, indicative of flows driven by reconnection in the tail.
Resumo:
We analyze the causes of the century-long increase in geomagnetic activity, quantified by annual means of the aa index, using observations of interplanetary space, galactic cosmic rays, the ionosphere, and the auroral electrojet, made during the last three solar cycles. The effects of changes in ionospheric conductivity, the Earth's dipole tilt, and magnetic moment are shown to be small; only changes in near-Earth interplanetary space make a significant contribution to the long-term increase in activity. We study the effects of the interplanetary medium by applying dimensional analysis to generate the optimum solar wind-magnetosphere energy coupling function, having an unprecedentedly high correlation coefficient of 0.97. Analysis of the terms of the coupling function shows that the largest contributions to the drift in activity over solar cycles 20-22 originate from rises in the average interplanetary magnetic field (IMF) strength, solar wind concentration, and speed; average IMF orientation has grown somewhat less propitious for causing geomagnetic activity. The combination of these factors explains almost all of the 39% rise in aa observed over the last three solar cycles. Whereas the IMF strength varies approximately in phase with sunspot numbers, neither its orientation nor the solar wind density shows any coherent solar cycle variation. The solar wind speed peaks strongly in the declining phase of even-numbered cycles and can be identified as the chief cause of the phase shift between the sunspot numbers and the aa index. The rise in the IMF magnitude, the largest single contributor to the drift in geomagnetic activity, is shown to be caused by a rise in the solar coronal magnetic field, consistent with a rise in the coronal source field, modeled from photospheric observations, and an observed decay in cosmic ray fluxes.
Resumo:
Naturally enhanced incoherent scatter spectra from the vicinity of the dayside cusp/cleft, interpreted as being due to plasma turbulence driven by short bursts of intense field-aligned current, are compared with high-resolution narrow-angle auroral images and meridian scanning photometer data. Enhanced spectra have been observed on many occasions in association with nightside aurora, but there has been only one report of such spectra seen in the cusp/cleft region. Narrow-angle images show considerable change in the aurora on timescales shorter than the 10-s radar integration period, which could explain spectra observed with both ion lines simultaneously enhanced. Enhanced radar spectra are generally seen inside or beside regions of 630-nm auroral emission, indicative of sharp F region conductivity gradients, but there appears also to be a correlation with dynamic, small-scale auroral forms of order 100 m and less in width.
Resumo:
The Polar spacecraft passed through a region near the dayside magnetopause on May 29, 1996, at a geocentric distance of similar to 8 R-E and high, northern magnetic latitudes. The interplanetary magnetic field (IMF) was northward during the pass. Data from the Thermal Ion Dynamics Experiment revealed the existence of low-speed (similar to 50 km s(-1)) ion D-shaped distributions mixed with cold ions (similar to 2 eV) over a period of 2.5 hours. These ions were traveling parallel to the magnetic field toward the Northern Hemisphere ionosphere and were convecting primarily eastward. The D-shaped distributions are distinct from a convecting Maxwellian and, along with the magnetic field direction, are taken as evidence that the spacecraft was inside the magnetosphere and not in the magnetosheath. Furthermore, the absence of ions in the antiparallel direction is taken as evidence that low-shear merging was occurring at a location southward of the spacecraft and equatorward of the Southern Hemisphere cusp. The cold ions were of ionospheric origin, with initially slow field-aligned speeds, which were accelerated upon reflection from the magnetopause. These observations provide significant new evidence consistent with component magnetic merging sites equatorward of the cusp for northward IMF.
Resumo:
Observations are presented of the response of the dayside cusp/cleft aurora to changes in both the clock and elevation angles of the interplanetary magnetic field (IMF) vector, as monitored by the WIND spacecraft. The auroral observations are made in 630 nm light at the winter solstice near magnetic noon, using an all-sky camera and a meridian-scanning photometer on the island of Spitsbergen. The dominant change was the response to a northward turning of the IMF which caused a poleward retreat of the dayside aurora. A second, higher-latitude band of aurora was seen to form following the northward turning, which is interpreted as the effect of lobe reconnection which reconfigures open flux. We suggest that this was made possible in the winter hemisphere, despite the effect of the Earth's dipole tilt, by a relatively large negative X component of the IMF. A series of five events then formed in the poleward band and these propagated in a southwestward direction and faded at the equatorward edge of the lower-latitude band as it migrated poleward. It is shown that the auroral observations are consistent with overdraped lobe flux being generated by lobe reconnection in the winter hemisphere and subsequently being re-closed by lobe reconnection in the summer hemisphere. We propose that the balance between the reconnection rates at these two sites is modulated by the IMF elevation angle, such that when the IMF points more directly northward, the summer lobe reconnection site dominates, re-closing all overdraped lobe flux and eventually becoming disconnected from the Northern Hemisphere.
Resumo:
We test the method of Lockwood et al. [1999] for deriving the coronal source flux from the geomagnetic aa index and show it to be accurate to within 12% for annual means and 4.5% for averages over a sunspot cycle. Using data from four solar constant monitors during 1981-1995, we find a linear relationship between this magnetic flux and the total solar irradiance. From this correlation, we show that the 131% rise in the mean coronal source field over the interval 1901-1995 corresponds to a rise in the average total solar irradiance of {\Delta}I = 1.65 +/- 0.23 Wm^{-2}.
Resumo:
Stellar astronomy tells us much about the long-term evolution of our Sun while forensic evidence (for example, cosmic-ray products in ice cores) gives us indications of its fluctuations over the last millennium. However, such studies do not give us a sufficiently detailed understanding of solar change over the last century to allow us to detect and quantify any role that the Sun might have played in the observed rise in average surface temperatures on Earth. This paper describes recent research that has filled this gap by applying advances in our understanding of the effects and structure of the solar wind to historical data on the Earth's magnetic field.
Resumo:
The distinction between plasma properties in different dayside regions in the Earth's magnetosphere is of strong interest as it is often indicative of specific physical processes. This is certainly true for the distinction between low latitude boundary layer (LLBL) and cusp plasma, which has been attributed to the effects of plasma diffusion across the magnetopause (LLBL) versus more direct entry of magnetosheath plasma(cusp). It is also the case, however, that quite different plasma regions can result more simply from a common source plasma, and from different stages of temporal evolution of the plasma associated with magnetospheric convection. In this paper, we show that, for southward interplanetary magnetic field (IMF) conditions, the distinction between the cusp and cleft/LLBL at low altitudes may result from;the single process of magnetosheath plasma entry into the magnetosphere on reconnected field lines. The different plasma characteristics of the two regions result from the properties of the source magnetosheath ion distribution and the effects of magnetic reconnection. Using well known properties of the magnetosheath, several predictions concerning the cusp and cleft/ LLBL precipitation are readily derived.
Resumo:
A variety of operational systems are vulnerable to disruption by solar disturbances brought to the Earth by the solar wind. Of particular importance to navigation systems are energetic charged particles which can generate temporary malfunctions and permanent damage in satellites. Modern spacecraft technology may prove to be particularly at risk during the next maximum of the solar cycle. In addition, the associated ionospheric disturbances cause phase shifts of transionospheric and ionosphere-reflected signals, giving positioning errors and loss of signal for GPS and Loran-C positioning systems and for over-the-horizon radars. We now have sufficient understanding of the solar wind, and how it interacts with the Earth's magnetic field, to predict statistically the likely effects on operational systems over the next solar cycle. We also have a number of advanced ways of detecting and tracking these disturbances through space but we cannot, as yet, provide accurate forecasts of individual disturbances that could be used to protect satellites and to correct errors. In addition, we have recently discovered long-term changes in the Sun, which mean that the number and severity of the disturbances to operational systems are increasing.