157 resultados para Glacial landforms
Resumo:
This paper presents evidence of the discovery of a new Middle Pleistocene site in central southern England, with undisturbed evidence of hominin occupation well-dated to an interstadial towards the end of Marine Isotope Stage 8, c. 250,000 BP. The site consists of a preserved remnant of a river terrace and its alluvial floodplain overlain by chalk-rich bankside deposits, all abutting a Chalk bedrock riverbank. It preserves an area of occupation with activity focused on the riverbank, complemented by occasional activity on a palaeo-landsurface developed on the surface of the alluvial floodplain. Lithic technology at the site consists almost entirely of handaxe manufacture, allowing attribution to an Acheulian industrial tradition. Mammalian and other palaeo-environmental remains are present and associated with the occupation horizons, including large mammal bones showing signs of hominin interference. Dating was based on OSL determinations on the sediments and amino acid racemisation of molluscan remains, supported by biostratigraphic indications. Besides being a rare instance of an undisturbed Palaeolithic palaeo-landscape covering several hectares, the site contributes to wider Quaternary research concerns over the ability of Middle Pleistocene hominins to tolerate colder climatic episodes in higher latitudes, and over settlement history and changing lithic industrial traditions of northwest Europe in relation to climate change and British peninsularity. It is suggested that the Harnham evidence may represent an insular population that had persisted in southern Britain since MIS 10/9, which became locally extinct during the glacial maximum 8.2 marking the end of MIS 8.
Resumo:
We present a selection of methodologies for using the palaeo-climate model component of the Coupled Model Intercomparison Project (Phase 5) (CMIP5) to attempt to constrain future climate projections using the same models. The constraints arise from measures of skill in hindcasting palaeo-climate changes from the present over three periods: the Last Glacial Maximum (LGM) (21 000 yr before present, ka), the mid-Holocene (MH) (6 ka) and the Last Millennium (LM) (850–1850 CE). The skill measures may be used to validate robust patterns of climate change across scenarios or to distinguish between models that have differing outcomes in future scenarios. We find that the multi-model ensemble of palaeo-simulations is adequate for addressing at least some of these issues. For example, selected benchmarks for the LGM and MH are correlated to the rank of future projections of precipitation/temperature or sea ice extent to indicate that models that produce the best agreement with palaeo-climate information give demonstrably different future results than the rest of the models. We also explore cases where comparisons are strongly dependent on uncertain forcing time series or show important non-stationarity, making direct inferences for the future problematic. Overall, we demonstrate that there is a strong potential for the palaeo-climate simulations to help inform the future projections and urge all the modelling groups to complete this subset of the CMIP5 runs.
Resumo:
Stable isotope analysis of leaf waxes in a sediment core from Laguna La Gaiba, a shallow lake located at the Bolivian margin of the Pantanal wetlands, provides new perspective on vegetation and climate change in the lowland interior tropics of South America over the past 40,000 years. The carbon isotopic compositions (δ13C) of long-chain n-alkanes reveal large shifts between C3-and C4-dominated vegetation communities since the last glacial period, consistent with landscape reconstructions generated with pollen data from the same sediment core. Leaf wax δ13C values during the last glacial period reflect an open landscape composed of C4grasses and C3herbs from 41–20ka. A peak in C4abundance during the Last Glacial Maximum (LGM, ∼21ka) suggests drier or more seasonal conditions relative to the earlier glacial period, while the development of a C3-dominated forest community after 20 ka points to increased humidity during the last deglaciation. Within the Holocene, large changes in the abundance of C4 vegetation indicate a transition from drier or more seasonal conditions during the early/mid-Holocene to wetter conditions in the late Holocene coincident with increasing austral summer insolation. Strong negative correlations between leaf wax δ13C and δD values over the entire record indicate that the majority of variability in leaf wax δD at this site can be explained by variability in the magnitude of biosynthetic fractionation by different vegetation types rather than changes in meteoric water δD signatures. However, positive δD deviations from the observed δ13C–δD trends are consistent with more enriched source water and drier or more seasonal conditions during the early/mid-Holocene and LGM. Overall, our record adds to evidence of varying influence of glacial boundary conditions and orbital forcing on South American Summer Monsoon precipitation in different regions of the South American tropics. Moreover, the relationships between leaf wax stable isotopes and pollen data observed at this site underscore the complementary nature of pollen and leaf wax δ13C data for reconstructing past vegetation changes and the potentially large effects of such changes on leaf wax δD signatures.
Resumo:
A new global synthesis and biomization of long (> 40 kyr) pollen-data records is presented and used with sim- ulations from the HadCM3 and FAMOUS climate models and the BIOME4 vegetation model to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial–interglacial cycle. Simulated biome distribu- tions using BIOME4 driven by HadCM3 and FAMOUS at the global scale over time generally agree well with those in- ferred from pollen data. Global average areas of grassland and dry shrubland, desert, and tundra biomes show large- scale increases during the Last Glacial Maximum, between ca. 64 and 74 ka BP and cool substages of Marine Isotope Stage 5, at the expense of the tropical forest, warm-temperate forest, and temperate forest biomes. These changes are re- flected in BIOME4 simulations of global net primary pro- ductivity, showing good agreement between the two models. Such changes are likely to affect terrestrial carbon storage, which in turn influences the stable carbon isotopic composi- tion of seawater as terrestrial carbon is depleted in 13C.
Resumo:
Excavations at Haua Fteah cave in Cyrenaica, Libya, have revealed a cultural sequence that may span the last glacial–interglacial-glacial cycle. The TRANS-NAP project has been re-excavating Haua Fteah and conducting geoarchaeological survey of an ecologically diverse landscape that includes the fertile Gebel Akhdar and littoral, pre-desert, and desert biomes. A major aim of this project is to characterize cultural and environmental changes across the region and correlate the surface archaeology with that from Haua Fteah. To date, 181 sites have been recorded, ranging from the Middle Stone Age (MSA) to Late Stone Age (LSA). Their geographic distribution suggests temporal variation in patterns of hominin habitat preference, with significantly more LSA than MSA sites at higher elevations. The surface archaeology also points to substantial spatiotemporal technological variation within the MSA. These patterns may be explained by both paleoenvironmental change and paleodemographic shifts in the region, resulting in a variety of hominin adaptive responses.
Resumo:
This paper reviews the current knowledge of climatic risks and impacts in South Asia associated with anthropogenic warming levels of 1.5°C to 4°C above pre-industrial values in the 21st century. It is based on the World Bank Report “Turn Down the Heat, Climate Extremes, Regional Impacts and the Case for Resilience” (2013). Many of the climate change impacts in the region, which appear quite severe even with relatively modest warming of 1.5–2°C, pose significant hazards to development. For example, increased monsoon variability and loss or glacial meltwater will likely confront populations with ongoing and multiple challenges. The result is a significant risk to stable and reliable water resources for the region, with increases in peak flows potentially causing floods and dry season flow reductions threatening agriculture. Irrespective of the anticipated economic development and growth, climate projections indicate that large parts of South Asia’s growing population and especially the poor are likely to remain highly vulnerable to climate change.
Resumo:
The timing and nature of the penultimate deglaciation, also known as Termination II (T-II), is subject of controversial discussions due to the scarcity of precisely-dated palaeoclimate records. Here we present a new precisely-dated and highly-resolved multi-proxy stalagmite record covering T-II from the high alpine Schafsloch Cave in Switzerland, an area where climate is governed by the North Atlantic. The inception of stalagmite growth at 137.4 ± 1.4 kyr before present (BP) indicates the presence of drip water and cave air temperatures of above 0°C, and is related to a climate-induced change in the thermal state (from cold- to warm-based) of the glacier above the cave. The cessation of stalagmite growth between 133.1 ± 0.7 and 131.9 ± 0.6 kyr BP is most likely related to distinct drop in temperature associated with Heinrich stadial 11. The resumption of stalagmite growth at 131.9 ± 0.6 kyr BP is accompanied by an abrupt increase in temperature and precipitation as indicated by distinct shifts in the oxygen and carbon isotopic composition as well as in trace element concentrations. The mid-point of T-II is around 131.8 ± 0.6 kyr BP in the Schafsloch Cave record is significantly earlier compared to the age of 129.1 ± 0.1 kyr BP in the Sanbao Cave record from China. The different ages between both records can be best explained by the competing effects of insolation and glacial boundary forcing on seasonality and snow cover extent in Eurasia.