152 resultados para Generalization Problem


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attending to stimuli that share perceptual similarity to learned threats is an adaptive strategy. However, prolonged threat generalization to cues signalling safety is considered a core feature of pathological anxiety. One potential factor that may sustain over-generalization is sensitivity to future threat uncertainty. To assess the extent to which Intolerance of Uncertainty (IU) predicts threat generalization, we recorded skin conductance in 54 healthy participants during an associative learning paradigm, where threat and safety cues varied in perceptual similarity. Lower IU was associated with stronger discrimination between threat and safety cues during acquisition and extinction. Higher IU, however, was associated with generalized responding to threat and safety cues during acquisition, and delayed discrimination between threat and safety cues during extinction. These results were specific to IU, over and above other measures of anxious disposition. These findings highlight: (1) a critical role of uncertainty-based mechanisms in threat generalization, and (2) IU as a potential risk factor for anxiety disorder development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Team Formation problem (TFP) has become a well-known problem in the OR literature over the last few years. In this problem, the allocation of multiple individuals that match a required set of skills as a group must be chosen to maximise one or several social positive attributes. Speci�cally, the aim of the current research is two-fold. First, two new dimensions of the TFP are added by considering multiple projects and fractions of people's dedication. This new problem is named the Multiple Team Formation Problem (MTFP). Second, an optimization model consisting in a quadratic objective function, linear constraints and integer variables is proposed for the problem. The optimization model is solved by three algorithms: a Constraint Programming approach provided by a commercial solver, a Local Search heuristic and a Variable Neighbourhood Search metaheuristic. These three algorithms constitute the first attempt to solve the MTFP, being a variable neighbourhood local search metaheuristic the most effi�cient in almost all cases. Applications of this problem commonly appear in real-life situations, particularly with the current and ongoing development of social network analysis. Therefore, this work opens multiple paths for future research.