194 resultados para Decoration and ornament, Medieval.
Resumo:
Widely distributed proxy records indicate that the Medieval Climate Anomaly (MCA; *900–1350 AD) was characterized by coherent shifts in large-scale Northern Hemisphere atmospheric circulation patterns. Although cooler sea surface temperatures in the central and eastern equatorial Pacific can explain some aspects of medieval circulation changes, they are not sufficient to account for other notable features, including widespread aridity through the Eurasian sub-tropics, stronger winter westerlies across the North Atlantic and Western Europe, and shifts in monsoon rainfall patterns across Africa and South Asia. We present results from a full-physics coupled climate model showing that a slight warming of the tropical Indian and western Pacific Oceans relative to the other tropical ocean basins can induce a broad range of the medieval circulation and climate changes indicated by proxy data, including many of those not explained by a cooler tropical Pacific alone. Important aspects of the results resemble those from previous simulations examining the climatic response to the rapid Indian Ocean warming during the late twentieth century, and to results from climate warming simulations—especially in indicating an expansion of the Northern Hemisphere Hadley circulation. Notably, the pattern of tropical Indo-Pacific sea surface temperature (SST) change responsible for producing the proxy-model similarity in our results agrees well with MCA-LIA SST differences obtained in a recent proxy-based climate field reconstruction. Though much remains unclear, our results indicate that the MCA was characterized by an enhanced zonal Indo-Pacific SST gradient with resulting changes in Northern Hemisphere tropical and extra-tropical circulation patterns and hydroclimate regimes, linkages that may explain the coherent regional climate shifts indicated by proxy records from across the planet. The findings provide new perspectives on the nature and possible causes of the MCA—a remarkable, yet incompletely understood episode of Late Holocene climatic change.
Resumo:
Although the ‘chronicle of chronicles’ compiled at Worcester c1095-c1140 is now firmly attributed to John of Worcester, rather than Florence, major questions remain. A central issue is that the semi-autograph manuscript of the chronicle (now Oxford, Corpus Christi College, Ms 157) underwent several alterations to its structure and contents, as codicological evidence demonstrates. These included the incorporation of important illuminations, which have been surprisingly little considered in their overall manuscript context. This article focuses on these illuminations, and will argue that their presence in this version of the chronicle makes it something even more distinctive than the learned, revisionist chronological work of Marianus Scotus upon which it was based. John of Worcester’s chosen images are linked not only to his political narrative but also to theological works and to cutting-edge science, newly translated from Arabic. The presence of such miniatures in a twelfth-century chronicle is unique, and they are central to the final form given to the Worcester chronicle by John of Worcester himself in this key manuscript. Their analysis thus brings into focus the impressive assembly of materials which the chronicle offered to readers, to shape their understanding of ongoing events.
Resumo:
A synthesis of global climate model results and inferences from proxy records suggests an increased sea surface temperature gradient between the tropical Indian and Pacific Oceans during medieval times.
Resumo:
This article looks at an important but neglected aspect of medieval sovereign debt, namely ‘accounts payable’ owed by the Crown to merchants and employees. It focuses on the unusually well-documented relationship between Henry III, King of England between 1216 and 1272, and Flemish merchants from the towns of Douai and Ypres, who provided cloth on credit to the royal wardrobe. From the surviving royal documents, we reconstruct the credit advanced to the royal wardrobe by the merchants of Ypres and Douai for each year between 1247 and 1270, together with the king's repayment history. The interactions between the king and the merchants are then analysed. The insights from this analysis are applied to the historical data to explain the trading decisions made by the merchants during this period, as well as why the strategies of the Yprois sometimes differed from those of the Douaissiens.
Resumo:
In much of the English-speaking world the lawn is the most common of all garden features. For arguably a millennium it has played a significant role in the landscape and during that period it has been inextricably linked with grasses. Nevertheless other plant species have accompanied the grasses and also been used in creating lawns. From medieval wildflowers to Victorian weeds, the plants that challenge the formal concept of the perfect lawn have journeyed with it but have until recently remained only small players within the dominion of grass. By the beginning of the 21st century, with a new environmental ethos permeating the garden, the long journey of the grassy lawn and its plant companions has led to the grass monoculture being heretically rethought: by removing both the monoculture and the grass.
Resumo:
Despite the recent expansion in studies of medieval women, uncertainty surrounds their married lives due to the social and legal constraints that existed at that time. Here it is argued that feet of fines provide a lens, albeit partial, on the activities of married women who were effectively managing the disposal and inheritance of their landed estates. At the same time the importance to the purchaser of ensuring the lawful acquisition of the property is also observed. As a result, greater insights into married women and their property in the fourteenth and fifteenth centuries are obtained.
Resumo:
Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.