176 resultados para Dairy
Resumo:
Cardiovascular disease (CVD) prevalence at a global level is predicted to increase substantially over the next decade due to the increasing ageing population and incidence of obesity. Hence, there is an urgent requirement to focus on modifiable contributors to CVD risk, including a high dietary intake of saturated fatty acids (SFA). As an important source of SFA in the UK diet, milk and dairy products are often targeted for SFA reduction. The current paper acknowledges that milk is a complex food and that simply focusing on the link between SFA and CVD risk overlooks the other beneficial nutrients of dairy foods. The body of existing prospective evidence exploring the impact of milk and dairy consumption on risk factors for CVD is reviewed. The current paper highlights that high milk consumption may be beneficial to cardiovascular health, while illustrating that the evidence is less clear for cheese and butter intake. The option of manipulating the fatty acid profile of ruminant milk is discussed as a potential dietary strategy for lowering SFA intake at a population level. The review highlights that there is a necessity to perform more well-controlled human intervention-based research that provides a more holistic evaluation of fat-reduced and fat-modified dairy consumption on CVD risk factors including vascular function, arterial stiffness, postprandial lipaemia and markers of inflammation. Additionally, further research is required to investigate the impact of different dairy products and the effect of the specific food matrix on CVD development.
Resumo:
Milk provides many key nutrients but the saturated and trans fatty acids in milk fat are associated with perceived negative effects on human health, especially cardiovascular disease. Recent epidemiological studies and dietary intervention trials challenge this perception, however; available evidence does not support the concept that consumption of saturated fats or dairy products adversely affects the risk of coronary heart disease (although replacing some saturated fats with mono or polyunsaturated fats is likely to provide benefit). Furthermore, the trans fats found in dairy products are consumed in very low amounts and do not appear to have the negative health effects associated with the consumption of industrial sources of trans fat. Milk fat is an excellent source of oleic acid that originates mainly by endogenous synthesis from stearic acid, but increasing the milk fat content of unsaturated fatty acids requires dietary formulations that bypass rumen biohydrogenation. Recent research indicates that long-chain omega-3 fatty acids and conjugated linoleic acids have potential beneficial effects in health maintenance and the prevention of chronic diseases. Enhancing the milk fat content of these fatty acids offers exciting possibilities, but educating consumers about inaccurate and inappropriate generalisations about fat remains the primary challenge. Finally, individuals do not simply consume milk-fat-derived fatty acids on their own, but rather as components in dairy foods which are highly complex and may contain many beneficial ingredients. Overall, dairy products are critical in providing many of the essential nutrients in the human diet. Nevertheless, dairy products vary in their nutrient composition, including fat, and this needs to be considered in the context of dietary recommendations and our need to consume a balanced diet.
Resumo:
Implications Overall, milk consumption provides health benefits to all age groups. Effects of cheese, butter, and fat-reduced and saturated fat-reduced milk and dairy products are less clear and require more research. Public health nutrition policy related to milk consumption should be based on the evidence presented and not solely on the believed negative effects of dietary fat. Milk is not a white elixir since no study has reported eternal youth from drinking it, but there is certainly no evidence that milk is a white poison!
Resumo:
Intensive farming focusing on monoculture grass species to maximise forage production has led to a reduction in the extent and diversity of species-rich grasslands. However, plant communities with higher species number (richness) are a potential strategy for more sustainable production and mitigation of greenhouse gas (GHG) emissions. Research has indicated the need to understand opportunities that forage mixtures can offer sustainable ruminant production systems. The objective of the two experiments reported here were to evaluate multiple species forage mixtures in comparison to ryegrass-dominant pasture, when conserved or grazed, on digestion, energy utilisation, N excretion, and methane emissions by growing 10–15 month old heifers. Experiment 1 was a 4 × 4 Latin square design with five week periods. Four forage treatments of: (1) ryegrass (control); permanent pasture with perennial ryegrass (Lolium perenne); (2) clover; a ryegrass:red clover (Trifolium pratense) mixture; (3) trefoil; a ryegrass:birdsfoot trefoil (Lotus corniculatus) mixture; and (4) flowers; a ryegrass:wild flower mixture of predominately sorrel (Rumex acetosa), ox-eye daisy (Leucanthemum vulgare), yarrow (Achillea millefolium), knapweed (Centaurea nigra) and ribwort plantain (Plantago lanceolata), were fed as haylages to four dairy heifers. Measurements included digestibility, N excretion, and energy utilisation (including methane emissions measured in respiration chambers). Experiment 2 used 12 different dairy heifers grazing three of the same forage treatments used to make haylage in experiment 1 (ryegrass, clover and flowers) and methane emissions were estimated using the sulphur hexafluoride (SF6) tracer technique. Distribution of ryegrass to other species (dry matter (DM) basis) was approximately 70:30 (clover), 80:20 (trefoil), and 40:60 (flowers) for experiment 1. During the first and second grazing rotations (respectively) in experiment 2, perennial ryegrass accounted for 95 and 98% of DM in ryegrass, and 84 and 52% of DM in clover, with red clover accounting for almost all of the remainder. In the flowers mixture, perennial ryegrass was 52% of the DM in the first grazing rotation and only 30% in the second, with a variety of other flower species occupying the remainder. Across both experiments, compared to the forage mixtures (clover, trefoil and flowers), ryegrass had a higher crude protein (CP) content (P < 0.001, 187 vs. 115 g kg −1 DM) and DM intake (P < 0.05, 9.0 vs. 8.1 kg day −1). Heifers in experiment 1 fed ryegrass, compared to the forage mixtures, had greater total tract digestibility (g kg −1) of DM (DMD; P < 0.008, 713 vs. 641) and CP (CPD, P < 0.001, 699 vs. 475), and used more intake energy (%) for body tissue deposition (P < 0.05, 2.6 vs. −4.9). For both experiments, heifers fed flowers differed the most compared to the ryegrass control for a number of measurements. Compared to ryegrass, flowers had 40% lower CP content (P < 0.001, 113 vs. 187 g kg −1), 18% lower DMD (P < 0.01, 585 vs. 713 g kg −1), 42% lower CPD (P < 0.001, 407 vs. 699 g kg −1), and 10% lower methane yield (P < 0.05, 22.6 vs. 25.1 g kg −1 DM intake). This study has shown inclusion of flowers in forage mixtures resulted in a lower CP concentration, digestibility and intake. These differences were due in part to sward management and maturity at harvest. Further research is needed to determine how best to exploit the potential environmental benefits of forage mixtures in sustainable ruminant production systems.
Resumo:
Various studies have indicated a relationship between enteric methane (CH4) production and milk fatty acid (FA) profiles of dairy cattle. However, the number of studies investigating such a relationship is limited and the direct relationships reported are mainly obtained by variation in CH4 production and milk FA concentration induced by dietary lipid supplements. The aim of this study was to perform a meta-analysis to quantify relationships between CH4 yield (per unit of feed and unit of milk) and milk FA profile in dairy cattle and to develop equations to predict CH4 yield based on milk FA profile of cows fed a wide variety of diets. Data from 8 experiments encompassing 30 different dietary treatments and 146 observations were included. Yield of CH4 measured in these experiments was 21.5 ± 2.46 g/kg of dry matter intake (DMI) and 13.9 ± 2.30 g/ kg of fat- and protein-corrected milk (FPCM). Correlation coefficients were chosen as effect size of the relationship between CH4 yield and individual milk FA concentration (g/100 g of FA). Average true correlation coefficients were estimated by a random-effects model. Milk FA concentrations of C6:0, C8:0, C10:0, C16:0, and C16:0-iso were significantly or tended to be positively related to CH4 yield per unit of feed. Concentrations of trans-6+7+8+9 C18:1, trans-10+11 C18:1, cis- 11 C18:1, cis-12 C18:1, cis-13 C18:1, trans-16+cis-14 C18:1, and cis-9,12 C18:2 in milk fat were significantly or tended to be negatively related to CH4 yield per unit of feed. Milk FA concentrations of C10:0, C12:0, C14:0-iso, C14:0, cis-9 C14:1, C15:0, and C16:0 were significantly or tended to be positively related to CH4 yield per unit of milk. Concentrations of C4:0, C18:0, trans-10+11 C18:1, cis-9 C18:1, cis-11 C18:1, and cis- 9,12 C18:2 in milk fat were significantly or tended to be negatively related to CH4 yield per unit of milk. Mixed model multiple regression and a stepwise selection procedure of milk FA based on the Bayesian information criterion to predict CH4 yield with milk FA as input (g/100 g of FA) resulted in the following prediction equations: CH4 (g/kg of DMI) = 23.39 + 9.74 × C16:0- iso – 1.06 × trans-10+11 C18:1 – 1.75 × cis-9,12 C18:2 (R2 = 0.54), and CH4 (g/kg of FPCM) = 21.13 – 1.38 × C4:0 + 8.53 × C16:0-iso – 0.22 × cis-9 C18:1 – 0.59 × trans-10+11 C18:1 (R2 = 0.47). This indicated that milk FA profile has a moderate potential for predicting CH4 yield per unit of feed and a slightly lower potential for predicting CH4 yield per unit of milk. Key words: methane , milk fatty acid profile , metaanalysis , dairy cattle
Resumo:
An isotope dilution model for partitioning phenylalanine and tyrosine uptake by the mammary gland of the lactating dairy cow is constructed and solved in the steady state. The model contains four intracellular and four extracellular pools and conservation of mass principles are applied to generate the fundamental equations describing the behaviour of the system. The experimental measurements required for model solution are milk secretion and plasma flow rate across the gland in combination with phenylalanine and tyrosine concentrations and plateau isotopic enrichments in arterial and venous plasma and free and protein bound milk during a constant infusion of [1-(13)C]phenylalanine and [2,3,5,6-(2)H]tyrosine tracer. If assumptions are made, model solution enables determination of steady state flows for phenylalanine and tyrosine inflow to the gland, outflow from it and bypass, and flows representing the synthesis and degradation of constitutive protein and hydroxylation. The model is effective in providing information about the fates of phenylalanine and tyrosine in the mammary gland and could be used as part of a more complex system describing amino acid metabolism in the whole ruminant.
Resumo:
Considerable specification choice confronts countable adoption investigations and there is need to measure, formally, the evidence in favor of competing formulations. This article presents alternative countable adoption specifications—hitherto neglected in the agricultural-economics literature—and assesses formally their usefulness to practitioners. Reference to the left side of de Finetti's (1937) famous representation theorem motivates Bayesian unification of agricultural adoption studies and facilitates comparisons with conventional binary-choice specifications. Such comparisons have not previously been considered. The various formulations and the specific techniques are highlighted in an application to crossbred cow adoption in Sri Lanka's small-holder dairy sector.
Resumo:
The importance of milk in the human diet as a supplier of energy, high quality protein and other key nutrients, including calcium, is broadly accepted yet in the mind of many there remains uncertainty about whether or not these foods contribute to increased risk of cardiovascular and other chronic diseases. The evidence from long term prospective cohort studies that high milk consumption does not increase cardiovascular disease risk and indeed may provide benefit is now pretty unequivocal, although the effects of butter and cheese and benefits of fat reduced milk and saturated fat reduced milk are less certain. Milk is a crucial supplier of calcium, phosphorus and magnesium for bone growth and development in children and it is concerning that due to reduced milk consumption intake of these nutrients is often sub-optimal, particularly for female children. In addition, specific health issues in pregnant women and the elderly can be alleviated by milk or components of milk and these effects are not all explained by traditional nutrition.
Resumo:
Replacing dietary grass silage (GS) with maize silage (MS) and dietary fat supplements may reduce milk concentration of specific saturated fatty acids (SFA) and can reduce methane production by dairy cows. The present study investigated the effect of feeding an extruded linseed supplement on milk fatty acid (FA) composition and methane production of lactating dairy cows, and whether basal forage type, in diets formulated for similar neutral detergent fiber and starch, altered the response to the extruded linseed supplement. Four mid-lactation Holstein-Friesian cows were fed diets as total mixed rations, containing either high proportions of MS or GS, both with or without extruded linseed supplement, in a 4 × 4 Latin square design experiment with 28-d periods. Diets contained 500 g of forage/kg of dry matter (DM) containing MS and GS in proportions (DM basis) of either 75:25 or 25:75 for high MS or high GS diets, respectively. Extruded linseed supplement (275 g/kg ether extract, DM basis) was included in treatment diets at 50 g/kg of DM. Milk yields, DM intake, milk composition, and methane production were measured at the end of each experimental period when cows were housed in respiration chambers. Whereas DM intake was higher for the MS-based diet, forage type and extruded linseed had no significant effect on milk yield, milk fat, protein, or lactose concentration, methane production, or methane per kilogram of DM intake or milk yield. Total milk fat SFA concentrations were lower with MS compared with GS-based diets (65.4 vs. 68.4 g/100 g of FA, respectively) and with extruded linseed compared with no extruded linseed (65.2 vs. 68.6 g/100 g of FA, respectively), and these effects were additive. Concentrations of total trans FA were higher with MS compared with GS-based diets (7.0 vs. 5.4 g/100 g of FA, respectively) and when extruded linseed was fed (6.8 vs. 5.6 g/100 g of FA, respectively). Total n-3 FA were higher when extruded linseed was fed compared with no extruded linseed (1.2 vs. 0.8 g/100 g of FA, respectively), whereas total n-6 polyunsaturated FA were higher when feeding MS compared with GS (2.5 vs. 2.1 g/100 g of FA, respectively). Feeding extruded linseed and MS both provided potentially beneficial decreases in SFA concentration of milk, and no significant interactions were found between extruded linseed supplementation and forage type. However, both MS and extruded linseed increased trans FA concentration in milk fat. Neither MS nor extruded linseed had significant effects on methane production or yield, but the amounts of supplemental lipid provided by extruded linseed were relatively small.
Resumo:
There has been growing concern about bacterial resistance to antimicrobials in the farmed livestock sector. Attention has turned to sub-optimal use of antimicrobials as a driver of resistance. Recent reviews have identified a lack of data on the pattern of antimicrobial use as an impediment to the design of measures to tackle this growing problem. This paper reports on a study that explored use of antibiotics by dairy farmers and factors influencing their decision-making around this usage. We found that respondents had either recently reduced their use of antibiotics, or planned to do so. Advice from their veterinarian was instrumental in this. Over 70% thought reducing antibiotic usage would be a good thing to do. The most influential source of information used was their own veterinarian. Some 50% were unaware of the available guidelines on use in cattle production. However, 97% thought it important to keep treatment records. The Theory of Planned Behaviour was used to identify dairy farmers’ drivers and barriers to reduce use of antibiotics. Intention to reduce usage was weakly correlated with current and past practice of antibiotic use, whilst the strongest driver was respondents’ belief that their social and advisory network would approve of them doing this. The higher the proportion of income from milk production and the greater the chance of remaining in milk production, the significantly higher the likelihood of farmers exhibiting positive intention to reduce antibiotic usage. Such farmers may be more commercially minded than others and thus more cost-conscious or, perhaps, more aware of possible future restrictions. Strong correlation was found between farmers’ perception of their social referents’ beliefs and farmers’ intent to reduce antibiotic use. Policy makers should target these social referents, especially veterinarians, with information on the benefits from, and the means to, achieving reductions in antibiotic usage. Information on sub-optimal use of antibiotics as a driver of resistance in dairy herds and in humans along with advice on best farm practice to minimise risk of disease and ensure animal welfare, complemented with data on potential cost savings from reduced antibiotic use would help improve poor practice.
Resumo:
There is increasing concern that the intensification of dairy production reduces the concentrations of nutritionally desirable compounds in milk. This study therefore compared important quality parameters (protein and fatty acid profiles; α-tocopherol and carotenoid concentrations) in milk from four dairy systems with contrasting production intensities (in terms of feeding regimens and milking systems). The concentrations of several nutritionally desirable compounds (β-lactoglobulin, omega-3 fatty acids, omega-3/omega-6 ratio, conjugated linoleic acid c9t11, and/or carotenoids) decreased with increasing feeding intensity (organic outdoor ≥ conventional outdoor ≥ conventional indoors). Milking system intensification (use of robotic milking parlors) had a more limited effect on milk composition, but increased mastitis incidence. Multivariate analyses indicated that differences in milk quality were mainly linked to contrasting feeding regimens and that milking system and breed choice also contributed to differences in milk composition between production systems.
The effects of dairy management and processing on quality characteristics of milk and dairy products
Resumo:
Studies within the QLIF project reviewed in this article suggest that organic or low-input management is more likely to result in milk with fatty acid profiles that are higher in α-linolenic acid and/or beneficial isomers of conjugated linoleic acid and antioxidants with up to a 2.5-fold increase in some cases, relative to milk from conventional production. These advantages are preserved during processing, resulting in elevated contents or concentrations of these constituents in processed dairy products of organic or low input origin. Much of the literature suggests that these benefits are very likely to be a result of a greater reliance on forages in the dairy diets (especially grazed grass). Since the adoption of alternative breeds or crosses is often an integral part sustaining these low-input systems, it is not possible to rule out an interaction with genotype in these monitored herds. The results suggest that milk fat composition with respect to human health can be optimized by exploiting grazing in the diet of dairy cows. However, in many European regions this may not be possible due to extremes in temperature, soil moisture levels or both. In such cases milk quality can be maintained by the inclusion of oil seeds in the dairy diets.