188 resultados para Bread Wheat
Resumo:
As climate changes, temperatures will play an increasing role in determining crop yield. Both climate model error and lack of constrained physiological thresholds limit the predictability of yield. We used a perturbed-parameter climate model ensemble with two methods of bias-correction as input to a regional-scale wheat simulation model over India to examine future yields. This model configuration accounted for uncertainty in climate, planting date, optimization, temperature-induced changes in development rate and reproduction. It also accounts for lethal temperatures, which have been somewhat neglected to date. Using uncertainty decomposition, we found that fractional uncertainty due to temperature-driven processes in the crop model was on average larger than climate model uncertainty (0.56 versus 0.44), and that the crop model uncertainty is dominated by crop development. Simulations with the raw compared to the bias-corrected climate data did not agree on the impact on future wheat yield, nor its geographical distribution. However the method of bias-correction was not an important source of uncertainty. We conclude that bias-correction of climate model data and improved constraints on especially crop development are critical for robust impact predictions.
Resumo:
Dietary nitrate, from beetroot, has been reported to lower blood pressure (BP) by the sequential reduction of nitrate to nitrite and further to NO in the circulation. However, the impact of beetroot on microvascular vasodilation and arterial stiffness is unknown. In addition, beetroot is consumed by only 4.5% of the UK population, whereas bread is a staple component of the diet. Thus, we investigated the acute effects of beetroot bread (BB) on microvascular vasodilation, arterial stiffness, and BP in healthy participants. Twenty-three healthy men received 200 g bread containing 100 g beetroot (1.1 mmol nitrate) or 200 g control white bread (CB; 0 g beetroot, 0.01 mmol nitrate) in an acute, randomized, open-label, controlled crossover trial. The primary outcome was postprandial microvascular vasodilation measured by laser Doppler iontophoresis and the secondary outcomes were arterial stiffness measured by Pulse Wave Analysis and Velocity and ambulatory BP measured at regular intervals for a total period of 6 h. Plasma nitrate and nitrite were measured at regular intervals for a total period of 7 h. The incremental area under the curve (0-6 h after ingestion of bread) for endothelium-independent vasodilation was greater (P = 0.017) and lower for diastolic BP (DBP; P = 0.032) but not systolic (P = 0.99) BP after BB compared with CB. These effects occurred in conjunction with increases in plasma and urinary nitrate (P < 0.0001) and nitrite (P < 0.001). BB acutely increased endothelium-independent vasodilation and decreased DBP. Therefore, enriching bread with beetroot may be a suitable vehicle to increase intakes of cardioprotective beetroot in the diet and may provide new therapeutic perspectives in the management of hypertension.
Selected wheat seed defense proteins exhibit competitive binding to model microbial lipid interfaces
Resumo:
Puroindolines (Pins) and purothionins (Pths) are basic, amphiphilic, cysteine-rich wheat proteins that play a role in plant defense against microbial pathogens. We have examined the co-adsorption and sequential addition of Pins (Pin-a, Pin-b and a mutant form of Pin-b with Trp-44 to Arg-44 substitution) and β-purothionin (β-Pth) model anionic lipid layers, using a combination of surface pressure measurements, external reflection FTIR spectroscopy and neutron reflectometry. Results highlighted differences in the protein binding mechanisms, and in the competitive binding and penetration of lipid layers between respective Pins and β-Pth. Pin-a formed a blanket-like layer of protein below the lipid surface that resulted in the reduction or inhibition of β-Pth penetration of the lipid layer. Wild-type Pin-b participated in co-operative binding with β-Pth, whereas the mutant Pin-b did not bind to the lipid layer in the presence of β-Pth. The results provide further insight into the role of hydrophobic and cationic amino acid residues in antimicrobial activity.
Resumo:
Factorial pot experiments were conducted to compare the responses of GA-sensitive and GA-insensitive reduced height (Rht) alleles in wheat for susceptibility to heat and drought stress during booting and anthesis. Grain set (grains/spikelet) of near isogenic lines (NILs) was assessed following three day transfers to controlled environments imposing day temperatures (t) from 20 to 40°C. Transfers were during booting and/or anthesis and pots maintained at field capacity (FC) or had water withheld. Logistic responses (y = c/1+e-b(t -m)) described declining grain set with increasing t, and t5 was that fitted to give a 5% reduction in grain set. Averaged over NIL, t5 for anthesis at FC was 31.7±0.47°C (S.E.M, 26 d.f.). Drought at anthesis reduced t5 by <2°C. Maintaining FC at booting conferred considerable resistance to high temperatures (t5=33.9°C) but booting was particularly heat susceptible without water (t5 =26.5°C). In one background (cv. Mercia), for NILs varying at the Rht-D1 locus, there was progressive reduction in t5 with dwarfing and reduced gibberellic acid (GA) sensitivity (Rht-D1a, tall, 32.7±0.72; Rht-D1b, semi-dwarf, 29.5±0.85; Rht-D1c, severe dwarf, 24.2±0.72). This trend was not evident for the Rht-B1 locus, or for Rht-D1b in an alternative background (Maris Widgeon). The GA-sensitive severe dwarf Rht12 was more heat tolerant (t5=29.4±0.72) than the similarly statured GA-insensitive Rht-D1c. The GA-sensitive, semi-dwarfing Rht8 conferred greater drought tolerance in one experiment. Despite the effects of Rht-D1 alleles in Mercia on stress tolerance, the inconsistency of the effects over background and locus led to the conclusion that semi-dwarfing with GA-insensitivity did not necessarily increase sensitivity to stress at booting and flowering. In comparison to effects of semi-dwarfing alleles, responses to heat stress are much more dramatically affected by water availability and the precise growth stage at which the stress is experienced by the plants.
Resumo:
The cell walls of wheat (Triticum aestivum) starchy endosperm are dominated by arabinoxylan (AX), accounting for 65% to 70% of the polysaccharide content. Genes within two glycosyl transferase (GT) families, GT43 (IRREGULAR XYLEM9 [IRX9] and IRX14) and GT47 (IRX10), have previously been shown to be involved in the synthesis of the xylan backbone in Arabidopsis, and close homologs of these have been implicated in the synthesis of xylan in other species. Here, homologs of IRX10 TaGT47_2 and IRX9 TaGT43_2, which are highly expressed in wheat starchy endosperm cells, were suppressed by RNA interference (RNAi) constructs driven by a starchy endosperm-specific promoter. The total amount of AX was decreased by 40% to 50% and the degree of arabinosylation was increased by 25% to 30% in transgenic lines carrying either of the transgenes. The cell walls of starchy endosperm in sections of grain from TaGT43_2 and TaGT47_2 RNAi transgenics showed decreased immunolabeling for xylan and arabinoxylan epitopes and approximately 50% decreased cell wall thickness compared with controls. The proportion of AX that was water soluble was not significantly affected, but average AX polymer chain length was decreased in both TaGT43_2 and TaGT47_2 RNAi transgenics. However, the long AX chains seen in controls were absent in TaGT43_2 RNAi transgenics but still present in TaGT47_2 RNAi transgenics. The results support an emerging picture of IRX9-like and IRX10-like proteins acting as key components in the xylan synthesis machinery in both dicots and grasses. Since AX is the main component of dietary fiber in wheat foods, the TaGT43_2 and TaGT47_2 genes are of major importance to human nutrition.
Resumo:
The starchy endosperm is the major storage tissue in the mature wheat grain and exhibits quantitative and qualitative gradients in composition, with the outermost cell layers being rich in protein, mainly gliadins, and the inner cells being low in protein but enriched in high-molecular-weight (HMW) subunits of glutenin. We have used sequential pearling to produce flour fractions enriched in particular cell layers to determine the protein gradients in four different cultivars grown at two nitrogen levels. The results show that the steepness of the protein gradient is determined by both genetic and nutritional factors, with three high-protein breadmaking cultivars being more responsive to the N treatment than a low-protein cultivar suitable for livestock feed. Nitrogen also affected the relative abundances of the three main classes of wheat prolamins: the sulfur-poor ω-gliadins showed the greatest response to nitrogen and increased evenly across the grain; the HMW subunits also increased in response to nitrogen but proportionally more in the outer layers of the starchy endosperm than near the core, while the sulfur-rich prolamins showed the opposite trend.
Resumo:
Wheat gluten proteins, gliadins and glutenins, are of great importance in determining the unique biomechanical properties of wheat. Studies have therefore been carried out to determine their pathways and mechanisms of synthesis, folding, and deposition in protein bodies. In the present work, a set of transgenic wheat lines has been studied with strongly suppressed levels of γ-gliadins and/or all groups of gliadins, using light and fluorescence microscopy combined with immunodetection using specific antibodies for γ-gliadins and HMW glutenin subunits. These lines represent a unique material to study the formation and fusion of protein bodies in developing seeds of wheat. Higher amounts of HMW subunits were present in most of the transgenic lines but only the lines with suppression of all gliadins showed differences in the formation and fusion of the protein bodies. Large rounded protein bodies were found in the wild-type lines and the transgenic lines with reduced levels of γ-gliadins, while the lines with all gliadins down-regulated had protein bodies of irregular shape and irregular formation. The size and number of inclusions, which have been reported to contain triticins, were also higher in the protein bodies in the lines with all the gliadins down-regulated. Changes in the protein composition and PB morphology reported in the transgenic lines with all gliadins down-regulated did not result in marked changes in the total protein content or instability of the different fractions.
Resumo:
The processing properties of the wheat flour are largely determined by the structures and interactions of the grain storage proteins (also called gluten proteins) which form a continuous visco-elastic network in dough. Wheat gluten proteins are classically divided into two groups, the monomeric gliadins and the polymeric glutenins, with the latter being further classified into low molecular weight (LMW) and high molecular weight (HMW) subunits. The synthesis, folding and deposition of the gluten proteins take place within the endomembrane system of the plant cell. However, determination of the precise routes of trafficking and deposition of individual gluten proteins in developing wheat grain has been limited in the past by the difficulty of developing monospecific antibodies. To overcome this limitation, a single gluten protein (a LMW subunit) was expressed in transgenic wheat with a C-terminal epitope tag, allowing the protein to be located in the cells of the developing grain using highly specific antibodies. This approach was also combined with the use of wider specificity antibodies to compare the trafficking and deposition of different gluten protein groups within the same endosperm cells. These studies are in agreement with previous suggestions that two trafficking pathways occur in wheat, with the proteins either being transported via the Golgi apparatus into the vacuole or accumulating directly within the lumen of the ER. They also suggest that the same individual protein could be trafficked by either pathway, possibly depending on the stage of development, and that segregation of gluten proteins both between and within protein bodies may occur.
Resumo:
The low-molecular-weight (LMW) glutenin subunits are components of the highly cross-linked glutenin polymers that confer viscoelastic properties to gluten and dough. They have both quantitative and qualitative effects on dough quality that may relate to differences in their ability to form the inter-chain disulphide bonds that stabilise the polymers. In order to determine the relationship between dough quality and the amounts and properties of the LMW subunits, we have transformed the pasta wheat cultivars Svevo and Ofanto with three genes encoding proteins, which differ in their numbers or positions of cysteine residues. The transgenes were delivered under control of the high-molecular-weight (HMW) subunit 1Dx5 gene promoter and terminator regions, and the encoded proteins were C-terminally tagged by the introduction of the c-myc epitope. Stable transformants were obtained with both cultivars, and the use of a specific antibody to the c-myc epitope tag allowed the transgene products to be readily detected in the complex mixture of LMW subunits. A range of transgene expression levels was observed. The addition of the epitope tag did not compromise the correct folding of the trangenic subunits and their incorporation into the glutenin polymers. Our results demonstrate that the ability to specifically epitope-tag LMW glutenin transgenes can greatly assist in the elucidation of their individual contributions to the functionality of the complex gluten system.
Resumo:
Water-deficit is a severe abiotic stress and major constraint to wheat productivity with effect on plant growth and development. The objective of this study was to characterize drought tolerant and susceptible spring wheat cultivars on the basis of physiological and yield attributes. The experiment was comprised of two irrigation regimes i.e. irrigated and 65% drought stress and ten wheat cultivars viz. Anmol, Moomal, Sarsabz, Bhittai, Pavon, SKD-1, TD-1, Kiran, Marvi and Mehran. Results indicated significant effect of water stress on stomatal dimension, stomatal conductance, relative leaf water content and grain yield with no effect on stomatal density. The irrigation × cultivars interaction was non-significant for grain yield only. Cultivars like Anmol, Moomal, Bhittai, Sarsabz proved to be drought tolerant with smaller stomatal dimensions, less stomatal conductance and more relative water content under water stress and produced higher grain yield. While decrease in relative water contents and grain yield, and increase in stomatal attributes was observed in drought susceptible cultivars such as Marvi, TD-1 and SKD-1 hence proved to be drought susceptible.
Resumo:
Wheat dextrin soluble fibre may have metabolic and health benefits, potentially acting via mechanisms governed by the selective modulation of the human gut microbiota. Our aim was to examine the impact of wheat dextrin on the composition and metabolic activity of the gut microbiota. We used a validated in vitro three-stage continuous culture human colonic model (gut model) system comprised of vessels simulating anatomical regions of the human colon. To mimic human ingestion, 7 g of wheat dextrin (NUTRIOSE® FB06) was administered to three gut models, twice daily at 10.00 and 15.00, for a total of 18 days. Samples were collected and analysed for microbial composition and organic acid concentrations by 16S rRNA-based fluorescence in situ hybridisation and gas chromatography approaches, respectively. Wheat dextrin mediated a significant increase in total bacteria in vessels simulating the transverse and distal colon, and a significant increase in key butyrate-producing bacteria Clostridium cluster XIVa and Roseburia genus in all vessels of the gut model. The production of principal short-chain fatty acids, acetate, propionate and butyrate, which have been purported to have protective, trophic and metabolic host benefits, were increased. Specifically, wheat dextrin fermentation had a significant butyrogenic effect in all vessels of the gut model and significantly increased production of acetate (vessels 2 and 3) and propionate (vessel 3), simulating the transverse and distal regions of the human colon, respectively. In conclusion, wheat dextrin NUTRIOSE® FB06 is selectively fermented in vitro by Clostridium cluster XIVa and Roseburia genus and beneficially alters the metabolic profile of the human gut microbiota.
Resumo:
We present a new Bayesian econometric specification for a hypothetical Discrete Choice Experiment (DCE) incorporating respondent ranking information about attribute importance. Our results indicate that a DCE debriefing question that asks respondents to rank the importance of attributes helps to explain the resulting choices. We also examine how mode of survey delivery (online and mail) impacts model performance, finding that results are not substantively a§ected by the mode of survey delivery. We conclude that the ranking data is a complementary source of information about respondent utility functions within hypothetical DCEs
Resumo:
Increasing cereal yield is needed to meet the projected increased demand for world food supply of about 70% by 2050. Sirius, a process-based model for wheat, was used to estimate yield potential for wheat ideotypes optimized for future climatic projections (HadCM3 global climate model) for ten wheat growing areas of Europe. It was predicted that the detrimental effect of drought stress on yield would be decreased due to enhanced tailoring of phenology to future weather patterns, and due to genetic improvements in the response of photosynthesis and green leaf duration to water shortage. Yield advances could be made through extending maturation and thereby improve resource capture and partitioning. However the model predicted an increase in frequency of heat stress at meiosis and anthesis. Controlled environment experiments quantify the effects of heat and drought at booting and flowering on grain numbers and potential grain size. A current adaptation of wheat to areas of Europe with hotter and drier summers is a quicker maturation which helps to escape from excessive stress, but results in lower yields. To increase yield potential and to respond to climate change, increased tolerance to heat and drought stress should remain priorities for the genetic improvement of wheat.
Resumo:
Currently UK fruit and vegetable intakes are below recommendations. Bread is a staple food consumed by ~95% of adults in western countries. In addition, bread provides an ideal matrix by which functionality can be delivered to the consumer in an accepted food. Therefore, enriching bread with vegetables may be an effective strategy to increase vegetable consumption. This study evaluated consumer acceptance, purchase intent and intention of product replacement of bread enriched with red beetroot, carrot with coriander, red pepper with tomato or white beetroot (80g vegetable per serving of 200g) compared to white control bread (0g vegetable). Consumers (n=120) rated their liking of the breads overall, as well as their liking of appearance, flavour and texture using nine-point hedonic scales. Product replacement and purchase intent of the breads was rated using five-point scales. The effect of providing consumers with health information about the breads was also evaluated. There were significant differences in overall liking (P<0.0001), as well as liking of appearance (P<0.0001), flavour (P=0.0002) and texture (P=0.04), between the breads. However, the significant differences resulted from the red beetroot bread which was significantly (P<0.05) less liked compared to control bread. There were no significant differences in overall liking between any of the other vegetable-enriched breads compared with the control bread (no vegetable inclusion), apart from the red beetroot bread which was significantly less liked. The provision of health information about the breads did not increase consumer liking of the vegetable-enriched breads. In conclusion, this study demonstrated that vegetable-enriched bread appeared to be an acceptable strategy to increase vegetable intake, however, liking depended on vegetable type.
Resumo:
Our objective was to investigate whether the presence of Glu298Asp polymorphism in the endothelial NO synthase (eNOS) gene differentially affects the postprandial blood pressure response to dietary nitrate-rich beetroot bread. A randomised, single-blind, controlled, crossover acute pilot study was performed in 14 healthy men (mean age: 34±9 years) who were retrospectively genotyped for Glu298Asp polymorphism (7GG; T carriers 7). Volunteers were randomised to receive 200 g beetroot-enriched bread (1.1 mmol nitrate) or control bread (no beetroot; 0.01 mmol nitrate) on two separate occasions 10 days apart. Baseline and incremental area under the curve of blood pressure and NOx (nitrate/nitrite) were measured for a 6-h postprandial period. A treatment × genotype interaction was observed for diastolic blood pressure (P<0.02), which was significantly lower in T carriers (P<0.01) after consumption of beetroot bread compared with control bread. No significant differences were observed in the GG group. The beneficial diastolic blood pressure reduction was observed only in the T carriers of the Glu298Asp polymorphism in the eNOS gene after consumption of nitrate-rich beetroot bread. These data require confirmation in a larger population group.