167 resultados para Algebras, Linear
Resumo:
The optically stimulated luminescence (OSL) from quartz is known to be the sum of several components with different rates of charge loss, originating from different trap types. The OSL components are clearly distinguished using the linear modulation (LM OSL) technique. A variety of pre-treatment and measurement conditions have been used on sedimentary samples in conjunction with linearly modulated optical stimulation to study in detail the behaviour of the OSL components of quartz. Single aliquots of different quartz samples have been found to contain typically five or six common LM OSL components when stimulated at View the MathML source. The components have been parameterised in terms of thermal stability (i.e. E and s), photoionisation cross-section energy dependence and dose response. The results of studies concerning applications of component-resolved LM OSL measurements on quartz are also presented. These include the detection of partial bleaching in young samples, use of ‘stepped wavelength’ stimulation to observe OSL from single components and attempts to extend the age range of quartz OSL dating.
Resumo:
The objective of this paper is to apply the mis-specification (M-S) encompassing perspective to the problem of choosing between linear and log-linear unit-root models. A simple M-S encompassing test, based on an auxiliary regression stemming from the conditional second moment, is proposed and its empirical size and power are investigated using Monte Carlo simulations. It is shown that by focusing on the conditional process the sampling distributions of the relevant statistics are well behaved under both the null and alternative hypotheses. The proposed M-S encompassing test is illustrated using US total disposable income quarterly data.
Resumo:
We compare a number of models of post War US output growth in terms of the degree and pattern of non-linearity they impart to the conditional mean, where we condition on either the previous period's growth rate, or the previous two periods' growth rates. The conditional means are estimated non-parametrically using a nearest-neighbour technique on data simulated from the models. In this way, we condense the complex, dynamic, responses that may be present in to graphical displays of the implied conditional mean.
Resumo:
We test whether there are nonlinearities in the response of short- and long-term interest rates to the spread in interest rates, and assess the out-of-sample predictability of interest rates using linear and nonlinear models. We find strong evidence of nonlinearities in the response of interest rates to the spread. Nonlinearities are shown to result in more accurate short-horizon forecasts, especially of the spread.
Resumo:
In this paper we discuss the current state-of-the-art in estimating, evaluating, and selecting among non-linear forecasting models for economic and financial time series. We review theoretical and empirical issues, including predictive density, interval and point evaluation and model selection, loss functions, data-mining, and aggregation. In addition, we argue that although the evidence in favor of constructing forecasts using non-linear models is rather sparse, there is reason to be optimistic. However, much remains to be done. Finally, we outline a variety of topics for future research, and discuss a number of areas which have received considerable attention in the recent literature, but where many questions remain.
Resumo:
We consider the impact of data revisions on the forecast performance of a SETAR regime-switching model of U.S. output growth. The impact of data uncertainty in real-time forecasting will affect a model's forecast performance via the effect on the model parameter estimates as well as via the forecast being conditioned on data measured with error. We find that benchmark revisions do affect the performance of the non-linear model of the growth rate, and that the performance relative to a linear comparator deteriorates in real-time compared to a pseudo out-of-sample forecasting exercise.
Resumo:
This paper models the transmission of shocks between the US, Japanese and Australian equity markets. Tests for the existence of linear and non-linear transmission of volatility across the markets are performed using parametric and non-parametric techniques. In particular the size and sign of return innovations are important factors in determining the degree of spillovers in volatility. It is found that a multivariate asymmetric GARCH formulation can explain almost all of the non-linear causality between markets. These results have important implications for the construction of models and forecasts of international equity returns.
Resumo:
This paper forecasts Daily Sterling exchange rate returns using various naive, linear and non-linear univariate time-series models. The accuracy of the forecasts is evaluated using mean squared error and sign prediction criteria. These show only a very modest improvement over forecasts generated by a random walk model. The Pesaran–Timmerman test and a comparison with forecasts generated artificially shows that even the best models have no evidence of market timing ability.
Resumo:
We discuss the modelling of dielectric responses of amorphous biological samples. Such samples are commonly encountered in impedance spectroscopy studies as well as in UV, IR, optical and THz transient spectroscopy experiments and in pump-probe studies. In many occasions, the samples may display quenched absorption bands. A systems identification framework may be developed to provide parsimonious representations of such responses. To achieve this, it is appropriate to augment the standard models found in the identification literature to incorporate fractional order dynamics. Extensions of models using the forward shift operator, state space models as well as their non-linear Hammerstein-Wiener counterpart models are highlighted. We also discuss the need to extend the theory of electromagnetically excited networks which can account for fractional order behaviour in the non-linear regime by incorporating nonlinear elements to account for the observed non-linearities. The proposed approach leads to the development of a range of new chemometrics tools for biomedical data analysis and classification.
Resumo:
This article shows how one can formulate the representation problem starting from Bayes’ theorem. The purpose of this article is to raise awareness of the formal solutions,so that approximations can be placed in a proper context. The representation errors appear in the likelihood, and the different possibilities for the representation of reality in model and observations are discussed, including nonlinear representation probability density functions. Specifically, the assumptions needed in the usual procedure to add a representation error covariance to the error covariance of the observations are discussed,and it is shown that, when several sub-grid observations are present, their mean still has a representation error ; socalled ‘superobbing’ does not resolve the issue. Connection is made to the off-line or on-line retrieval problem, providing a new simple proof of the equivalence of assimilating linear retrievals and original observations. Furthermore, it is shown how nonlinear retrievals can be assimilated without loss of information. Finally we discuss how errors in the observation operator model can be treated consistently in the Bayesian framework, connecting to previous work in this area.
Resumo:
Georeferencing is one of the major tasks of satellite-borne remote sensing. Compared to traditional indirect methods, direct georeferencing through a Global Positioning System/inertial navigation system requires fewer and simpler steps to obtain exterior orientation parameters of remotely sensed images. However, the pixel shift caused by geographic positioning error, which is generally derived from boresight angle as well as terrain topography variation, can have a great impact on the precision of georeferencing. The distribution of pixel shifts introduced by the positioning error on a satellite linear push-broom image is quantitatively analyzed. We use the variation of the object space coordinate to simulate different kinds of positioning errors and terrain topography. Then a total differential method was applied to establish a rigorous sensor model in order to mathematically obtain the relationship between pixel shift and positioning error. Finally, two simulation experiments are conducted using the imaging parameters of Chang’ E-1 satellite to evaluate two different kinds of positioning errors. The experimental results have shown that with the experimental parameters, the maximum pixel shift could reach 1.74 pixels. The proposed approach can be extended to a generic application for imaging error modeling in remote sensing with terrain variation.
Nonuniqueness in vector-valued calculus of variations in l-infinity and some linear elliptic systems