171 resultados para Agricultural pests.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intensification of agriculture and the development of synthetic insecticides enabled worldwide grain production to more than double in the last third of the 20th century. However, the heavy dependence and, in some cases, overuse of insecticides has been responsible for negative environmental and ecological impacts across the globe, such as a reduction in biodiversity, insect resistance to pesticides, negative effects on nontarget species (e.g. natural enemies) and the development of secondary pests. The use of recombinant DNA technology to develop genetically engineered (GE) insect resistant crops could mitigate many of the negative side effects of pesticides. One such genetic alteration enables crops to express toxic crystalline (Cry) proteins from the soil bacteria Bacillus thuringiensis (Bt). Despite the widespread adoption of Bt crops, there are still a range of unanswered questions concerning longer term agro-ecosystem interactions. For instance, insect species that are not susceptible to the expressed toxin can develop into secondary pests and cause significant damage to the crop. Here we review the main causes surrounding secondary pest dynamics in Bt crops and the impact of such outbreaks. Regardless of the causes, if non-susceptible secondary pest populations exceed economic thresholds, insecticide spraying could become the immediate solution at farmers’ disposal, and the sustainable use of this genetic modification technology may be in jeopardy. Based on the literature, recommendations for future research are outlined that will help to improve the knowledge of the possible longterm ecological trophic interactions of employing this technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is little consensus on how agriculture will meet future food demands sustainably. Soils and their biota play a crucial role by mediating ecosystem services that support agricultural productivity. However, a multitude of site-specific environmental factors and management practices interact to affect the ability of soil biota to perform vital functions, confounding the interpretation of results from experimental approaches. Insights can be gained through models, which integrate the physiological, biological and ecological mechanisms underpinning soil functions. We present a powerful modelling approach for predicting how agricultural management practices (pesticide applications and tillage) affect soil functioning through earthworm populations. By combining energy budgets and individual-based simulation models, and integrating key behavioural and ecological drivers, we accurately predict population responses to pesticide applications in different climatic conditions. We use the model to analyse the ecological consequences of different weed management practices. Our results demonstrate that an important link between agricultural management (herbicide applications and zero, reduced and conventional tillage) and earthworms is the maintenance of soil organic matter (SOM). We show how zero and reduced tillage practices can increase crop yields while preserving natural ecosystem functions. This demonstrates how management practices which aim to sustain agricultural productivity should account for their effects on earthworm populations, as their proliferation stimulates agricultural productivity. Synthesis and applications. Our results indicate that conventional tillage practices have longer term effects on soil biota than pesticide control, if the pesticide has a short dissipation time. The risk of earthworm populations becoming exposed to toxic pesticides will be reduced under dry soil conditions. Similarly, an increase in soil organic matter could increase the recovery rate of earthworm populations. However, effects are not necessarily additive and the impact of different management practices on earthworms depends on their timing and the prevailing environmental conditions. Our model can be used to determine which combinations of crop management practices and climatic conditions pose least overall risk to earthworm populations. Linking our model mechanistically to crop yield models would aid the optimization of crop management systems by exploring the trade-off between different ecosystem services.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil organic matter (SOM) is one of the main global carbon pools. It is a measure of soil quality as its presence increases carbon sequestration and improves physical and chemical soil properties. The determination and characterisation of humic substances gives essential information of the maturity and stresses of soils as well as of their health. However, the determination of the exact nature and molecular structure of these substances has been proven difficult. Several complex techniques exist to characterise SOM and mineralisation and humification processes. One of the more widely accepted for its accuracy is nuclear magnetic resonance (NMR) spectroscopy. Despite its efficacy, NMR needs significant economic resources, equipment, material and time. Proxy measures like the fluorescence index (FI), cold and hot-water extractable carbon (CWC and HWC) and SUVA-254 have the potential to characterise SOM and, in combination, provide qualitative and quantitative data of SOM and its processes. Spanish and British agricultural cambisols were used to measure SOM quality and determine whether similarities were found between optical techniques and 1H NMR results in these two regions with contrasting climatic conditions. High correlations (p < 0.001) were found between the specific aromatic fraction measured with 1H NMR and SUVA-254 (Rs = 0.95) and HWC (Rs = 0.90), which could be described using a linear model. A high correlation between FI and the aromatics fraction measured with 1H NMR (Rs = −0.976) was also observed. In view of our results, optical measures have a potential, in combination, to predict the aromatic fraction of SOM without the need of expensive and time consuming techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Landscape scale habitat restoration has the potential to reconnect habitats in fragmented landscapes. This study investigates landscape connectivity as a key to effective habitat restoration in lowland agricultural landscapes and applies these findings to transferable management recommendations. The study area is the Stonehenge World Heritage Site, UK, where landscape scale chalk grassland restoration has been implemented. Here, the ecological benefits of landscape restoration and the species, habitat and landscape characteristics that facilitate or impede the enhancement of biodiversity and landscape connectivity were investigated. Lepidoptera were used as indictors of restoration success and results showed restoration grasslands approaching the ecological conditions of the target chalk grassland habitat and increasing in biodiversity values within a decade. Restoration success is apparent for four species with a broad range of grass larval host plants (e.g. Melanargia galathea, Maniola jurtina) or with intermediate mobility (Polyommatus icarus). However, two species with specialist larval host plants and low mobility (Lysandra bellargus), are restricted to chalk grassland fragments. Studies of restoration grassland of different ages show that recent grassland restoration (1 or 2 years old) may reduce the functional isolation of chalk grassland fragments. A management experiment showed that mowing increases boundary following behaviour in two species of grassland Lepidoptera; Maniola jurtina and Zygaena filipendulae. Analysis of the landscape scale implications of the grassland restoration illustrates an increase in grassland habitat network size and in landscape connectivity, which is likely to benefit the majority of grassland associated Lepidoptera. Landscape and habitat variables can be managed to increase the success of restoration projects including the spatial targeting of receptor sites, vegetation structure and selection of seed source and management recommendations are provided that are transferrable to other species-rich grassland landscape scale restoration projects. Overall results show restoration success for some habitats and species within a decade. However, additional management is required to assist the re-colonisation of specialist species. Despite this, habitat restoration at the landscape scale can be an effective, long term approach to enhance butterfly biodiversity and landscape connectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study examined the contribution of the Cocoa Disease and Pest Control Programme (CODAPEC), which is a cocoa production-enhancing government policy, to reducing poverty and raising the living standards of cocoa farmers in Ghana. One hundred and fifty (150) cocoa farmers were randomly selected from five communities in the Bibiani-Anhwiaso-Bekwai district of the Western Region of Ghana and interviewed using structured questionnaires. Just over half of the farmers (53%) perceived the CODAPEC programme as being effective in controlling pests and diseases, whilst 56.6% felt that their yields and hence livelihoods had improved. In some cases pesticides or fungicides were applied later in the season than recommended and this had a detrimental effect on yields. To determine the level of poverty amongst farmers, annual household consumption expenditure was used as a proxy indicator. The study found that 4.7% of cocoa farmers were extremely poor having a total annual household consumption expenditure of less than GH¢ 623.10 ($310.00) while 8.0% were poor with less than GH¢ 801.62 ($398.81). An amount of money ranging from GH¢ 20.00 ($9.95) to GH¢ 89.04 ($44.29) per annum was needed to lift the 4.7% of cocoa farmers out of extreme poverty, which could be achieved through modest increases in productivity. The study highlighted how agricultural intervention programmes, such as CODAPEC, have the potential to contribute to improved farmer livelihoods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Western Australian wheatbelt, the restoration of native eucalypt forests for managing degraded agricultural landscapes is a critical part of managing dryland salinity and rebuilding biodiversity. Such reforestation will also sequester carbon. Whereas most investigative emphasis has been on carbon stored in biomass, the effects of reforestation on soil organic carbon (SOC) stores and fertility are not known. Two 26 year old reforestation experiments with four Eucalyptus species (E. cladocalyx var nana, E. occidentalis, E. sargentii and E. wandoo) were compared with agricultural sites (Field). SOC stores (to 0.3 m depth) ranged between 33 and 55 Mg ha−1, with no statistically significant differences between tree species and adjacent farmland. Farming comprised crop and pasture rotations. In contrast, the reforested plots contained additional carbon in the tree biomass (23–60 Mg ha−1) and litter (19–34 Mg ha−1), with the greatest litter accumulation associated with E. sargentii. Litter represented between 29 and 56% of the biomass carbon and the protection or utilization of this litter in fire-prone, semi-arid farmland will be an important component of carbon management. Exch-Na and Exch-Mg accumulated under E. sargentii and E. occidentalis at one site. The results raise questions about the conclusions of SOC sequestration studies following reforestation based on limited sampling and reiterate the importance of considering litter in reforestation carbon accounts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transformation of the south-western Australian landscape from deep-rooted woody vegetation systems to shallow-rooted annual cropping systems has resulted in the severe loss of biodiversity and this loss has been exacerbated by rising ground waters that have mobilised stored salts causing extensive dry land salinity. Since the original plant communities were mostly perennial and deep rooted, the model for sustainable agriculture and landscape water management invariably includes deep rooted trees. Commercial forestry is however only economical in higher rainfall (>700 mm yr−1) areas whereas much of the area where biodiversity is threatened has lower rainfall (300–700 mm yr−1). Agroforestry may provide the opportunity to develop new agricultural landscapes that interlace ecosystem services such as carbon mitigation via carbon sequestration and biofuels, biodiversity restoration, watershed management while maintaining food production. Active markets are developing for some of these ecosystem services, however a lack of predictive metrics and the regulatory environment are impeding the adoption of several ecosystem services. Nonetheless, a clear opportunity exists for four major issues – the maintenance of food and fibre production, salinisation, biodiversity decline and climate change mitigation – to be managed at a meaningful scale and a new, sustainable agricultural landscape to be developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of policy reform has tended to focus on single-stage reforms taking place over a relatively short period. Recent research has drawn attention to gradual policy changes unfolding over extended periods. One strategy of gradual change is layering, in which new policy dimensions are introduced by adding new policy instruments or by redesigning existing ones to address new concerns. The limited research on single-stage policy reforms highlights that these may not endure in the postenactment phase when circumstances change. We argue that gradual policy layering may create sustainability dynamics that can result in lasting reform trajectories. The European Union’s Common Agricultural Policy (CAP) has changed substantially over the last three decades in response to emerging policy concerns by adding new layers. This succession of reforms proved durable and resilient to reversal in the lead-up to the 2013 CAP reform when institutional and political circumstances changed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lowland heath is an internationally important habitat type that has greatly declined in abundance throughout Western Europe. In recent years this has led to a growing interest in the restoration of heathland on agricultural land. This generally requires the use of chemical treatments to return soil chemical conditions to those appropriate for the support of heathland ecosystems. However, the potential for negative impacts on the environment due to the potential of these treatments to increase the availability of trace metals via raised soil acidity requires investigation. A large-scale field study investigated the effect of two chemical treatments used in heathland restoration, elemental sulphur and ferrous sulphate, on soil acidity and whether it is possible to predict the effect of the treatments on availability of two potentially toxic cations (Al and Cd) in the soil along with their subsequent accumulation in the shoots of the grass Agrostis capillaris. Results showed that both treatments decreased soil pH, but that only elemental sulphur produced a pH similar to heathland soil. The availability of Al, measured by extraction with 1 M ammonium nitrate, could not be predicted by soil pH, depth in the soil and total Al concentration in the soil. By contrast, availability of Cd could be predicted from these three variables. Concentrations of both Al and Cd in the shoots of A. capillaris showed no significant relationship with the extractable concentration in the soil. Results are discussed in light of the possible environmental impacts of the chemical restoration techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long-term stable habitats. The variability of complex, short-term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs’ usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and flower availability. Additionally, testing SDMs with field surveys should involve multiple collection techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Landscape heterogeneity (the composition and configuration of matrix habitats) plays a major role in shaping species communities in wooded-agricultural landscapes. However, few studies consider the influence of different types of semi-natural and linear habitats in the matrix, despite their known ecological value for biodiversity. Objective To investigate the importance of the composition and configuration of matrix habitats for woodland carabid communities and identify whether specific landscape features can help to maintain long-term populations in wooded-agricultural environments. Methods Carabids were sampled from woodlands in 36 tetrads of 4 km2 across southern Britain. Landscape heterogeneity including an innovative representation of linear habitats was quantified for each tetrad. Carabid community response was analysed using ordination methods combined with variation partitioning and additional response trait analyses. Results Woodland carabid community response was trait-specific and better explained by simultaneously considering the composition and configuration of matrix habitats. Semi-natural and linear features provided significant refuge habitat and functional connectivity. Mature hedgerows were essential for slow-dispersing carabids in fragmented landscapes. Species commonly associated with heathland were correlated with inland water and woodland patches despite widespread heathland conversion to agricultural land, suggesting that species may persist for some decades when elements representative of the original habitat are retained following landscape modification. Conclusions Semi-natural and linear habitats have high biodiversity value. Landowners should identify features that can provide additional resources or functional connectivity for species relative to other habitat types in the landscape matrix. Agri-environment options should consider landscape heterogeneity to identify the most efficacious changes for biodiversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clubroot disease and the causal microbe Plasmodiophora brassicae offer abundant challenges to agriculturists and biological scientists. This microbe is well fitted for the environments which it inhabits. Plasmodiophora brassicae exists in soil as microscopic well protected resting spores and then grows actively and reproduces while shielded inside the roots of host plants. The pathogen is active outside the host for only short periods. Consequently, scientific studies are made challenging by the biological context of the host and pathogen and the technology required to investigate and understand that relationship. Controlling clubroot disease is a challenge for farmers, crop consultants and plant pathology practitioners because of the limited options which are available. Full symptom expression happens solely in members of the Brassicaceae family. Currently, only a few genes expressing strong resistance to P. brassicae are known and readily available. Agrochemical control is similarly limited by difficulties in molecule formulation which combines efficacy with environmental acceptability. Manipulation of husbandry encouraging improvements in soil structure, texture, nutrient composition and moisture content can reduce populations of P. brassicae. Integrating such strategies with rotation and crop management will reduce but not eliminate this disease. There are indications that forms of biological competition may be mobilised as additions to integrated control strategies. The aim of this review is to chart key themes in the development of scientific biological understanding of this host-pathogen relationship by offering signposts to grapple with clubroot disease which devastates crops and their profitability. Particular attention is given to the link between soil and nutrient chemistry and activity of this microbe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New models for estimating bioaccumulation of persistent organic pollutants in the agricultural food chain were developed using recent improvements to plant uptake and cattle transfer models. One model named AgriSim was based on K OW regressions of bioaccumulation in plants and cattle, while the other was a steady-state mechanistic model, AgriCom. The two developed models and European Union System for the Evaluation of Substances (EUSES), as a benchmark, were applied to four reported food chain (soil/air-grass-cow-milk) scenarios to evaluate the performance of each model simulation against the observed data. The four scenarios considered were as follows: (1) polluted soil and air, (2) polluted soil, (3) highly polluted soil surface and polluted subsurface and (4) polluted soil and air at different mountain elevations. AgriCom reproduced observed milk bioaccumulation well for all four scenarios, as did AgriSim for scenarios 1 and 2, but EUSES only did this for scenario 1. The main causes of the deviation for EUSES and AgriSim were the lack of the soil-air-plant pathway and the ambient air-plant pathway, respectively. Based on the results, it is recommended that soil-air-plant and ambient air-plant pathway should be calculated separately and the K OW regression of transfer factor to milk used in EUSES be avoided. AgriCom satisfied the recommendations that led to the low residual errors between the simulated and the observed bioaccumulation in agricultural food chain for the four scenarios considered. It is therefore recommended that this model should be incorporated into regulatory exposure assessment tools. The model uncertainty of the three models should be noted since the simulated concentration in milk from 5th to 95th percentile of the uncertainty analysis often varied over two orders of magnitude. Using a measured value of soil organic carbon content was effective to reduce this uncertainty by one order of magnitude.