193 resultados para interval prediction
Resumo:
One of the fundamental questions in dynamical meteorology, and one of the basic objectives of GARP, is to determine the predictability of the atmosphere. In the early planning stage and preparation for GARP a number of theoretical and numerical studies were undertaken, indicating that there existed an inherent unpredictability in the atmosphere which even with the most ideal observing system would limit useful weather forecasting to 2-3 weeks.
Resumo:
With the introduction of new observing systems based on asynoptic observations, the analysis problem has changed in character. In the near future we may expect that a considerable part of meteorological observations will be unevenly distributed in four dimensions, i.e. three dimensions in space and one in time. The term analysis, or objective analysis in meteorology, means the process of interpolating observed meteorological observations from unevenly distributed locations to a network of regularly spaced grid points. Necessitated by the requirement of numerical weather prediction models to solve the governing finite difference equations on such a grid lattice, the objective analysis is a three-dimensional (or mostly two-dimensional) interpolation technique. As a consequence of the structure of the conventional synoptic network with separated data-sparse and data-dense areas, four-dimensional analysis has in fact been intensively used for many years. Weather services have thus based their analysis not only on synoptic data at the time of the analysis and climatology, but also on the fields predicted from the previous observation hour and valid at the time of the analysis. The inclusion of the time dimension in objective analysis will be called four-dimensional data assimilation. From one point of view it seems possible to apply the conventional technique on the new data sources by simply reducing the time interval in the analysis-forecasting cycle. This could in fact be justified also for the conventional observations. We have a fairly good coverage of surface observations 8 times a day and several upper air stations are making radiosonde and radiowind observations 4 times a day. If we have a 3-hour step in the analysis-forecasting cycle instead of 12 hours, which is applied most often, we may without any difficulties treat all observations as synoptic. No observation would thus be more than 90 minutes off time and the observations even during strong transient motion would fall within a horizontal mesh of 500 km * 500 km.
Resumo:
This paper provides an update on research in the relatively new and fast-moving field of decadal climate prediction, and addresses the use of decadal climate predictions not only for potential users of such information but also for improving our understanding of processes in the climate system. External forcing influences the predictions throughout, but their contributions to predictive skill become dominant after most of the improved skill from initialization with observations vanishes after about six to nine years. Recent multi-model results suggest that there is relatively more decadal predictive skill in the North Atlantic, western Pacific, and Indian Oceans than in other regions of the world oceans. Aspects of decadal variability of SSTs, like the mid-1970s shift in the Pacific, the mid-1990s shift in the northern North Atlantic and western Pacific, and the early-2000s hiatus, are better represented in initialized hindcasts compared to uninitialized simulations. There is evidence of higher skill in initialized multi-model ensemble decadal hindcasts than in single model results, with multi-model initialized predictions for near term climate showing somewhat less global warming than uninitialized simulations. Some decadal hindcasts have shown statistically reliable predictions of surface temperature over various land and ocean regions for lead times of up to 6-9 years, but this needs to be investigated in a wider set of models. As in the early days of El Niño-Southern Oscillation (ENSO) prediction, improvements to models will reduce the need for bias adjustment, and increase the reliability, and thus usefulness, of decadal climate predictions in the future.
Resumo:
Although early modern acting companies were adept at using different kinds of venue, performing indoors imposed a significant change in practice. Since indoor theatres required artificial lighting to augment the natural light admitted via windows, candles were employed; but the technology was such that candles could not last untended throughout an entire performance. Performing indoors thus introduced a new component into stage practice: the interval. This article explores what extant evidence (such as it is) might tell us about the introduction of act breaks, how they may have worked, and the implications for actors, audiences and dramatists. Ben Jonson's scripting of the interval in two late plays, The Staple of News and The Magnetic Lady, is examined for what it may suggest about actual practice, and the ways in which the interval may have been considered integral to composition and performance is explored through a reading of Middleton and Rowley's The Changeling. The interval offered playwrights a form of structural punctuation, drawing attention to how acts ended and began; actors could use the space to bring on props for use in the next act; spectators might use the pause between acts to reflect on what had happened and, perhaps, anticipate what was to come; and stage-sitters, the evidence indicates, often took advantage of the hiatus in the play to assert their presence in the space to which all eyes naturally were drawn.
Resumo:
The FunFOLD2 server is a new independent server that integrates our novel protein–ligand binding site and quality assessment protocols for the prediction of protein function (FN) from sequence via structure. Our guiding principles were, first, to provide a simple unified resource to make our function prediction software easily accessible to all via a simple web interface and, second, to produce integrated output for predictions that can be easily interpreted. The server provides a clean web interface so that results can be viewed on a single page and interpreted by non-experts at a glance. The output for the prediction is an image of the top predicted tertiary structure annotated to indicate putative ligand-binding site residues. The results page also includes a list of the most likely binding site residues and the types of predicted ligands and their frequencies in similar structures. The protein–ligand interactions can also be interactively visualized in 3D using the Jmol plug-in. The raw machine readable data are provided for developers, which comply with the Critical Assessment of Techniques for Protein Structure Prediction data standards for FN predictions. The FunFOLD2 webserver is freely available to all at the following web site: http://www.reading.ac.uk/bioinf/FunFOLD/FunFOLD_form_2_0.html.
Resumo:
We present an efficient graph-based algorithm for quantifying the similarity of household-level energy use profiles, using a notion of similarity that allows for small time–shifts when comparing profiles. Experimental results on a real smart meter data set demonstrate that in cases of practical interest our technique is far faster than the existing method for computing the same similarity measure. Having a fast algorithm for measuring profile similarity improves the efficiency of tasks such as clustering of customers and cross-validation of forecasting methods using historical data. Furthermore, we apply a generalisation of our algorithm to produce substantially better household-level energy use forecasts from historical smart meter data.