246 resultados para binuclear ruthenium complexes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two new hexa-coordinated mononuclear copper(II) complexes of two ligands L-1 and L-2 containing NSSN donor sets formulated as [Cu(L)(H2O)(2)](NO3)(2) [1a, L = 1,2-bis(2-pyridylmethylthio)ethane (L-1), 1b L = 1,3-bis(2-pyridyl-methylthio)propane (L-2)] were synthesized and characterized by physico-chemical and spectroscopic methods. In 1a the single crystal X-ray crystallography analysis showed a distorted octahedral geometry about copper(II) ion. The crystal packing evidences pairs of complexes arranged about a center of symmetry and connected through a H-bond occurring between aquo ligands and nitrate anions. On reaction with chloride and pseudohalides (N-3(-) and SCN-), in acetonitrile at ambient temperature. complexes 1 changed to monocationic penta-coordinated mononuclear copper(H) species formulated as [Cu(L)(Cl)]NO3 (2), [Cu(L)(N-3)]NO3 (3). and [Cu(L)(SCN)]NO3 (4). These copper(II) complexes have been isolated in pure form from the reaction mixtures and characterized by physico-chemical and spectroscopic tools. The solid-state structure of 2a, established by X-ray crystallography, shows a trigonal bipyramidal geometry about the metal ion with a trigonality index (tau) of 0.561. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New lanthanide complexes of 3-hydroxypicolinic acid (HpicOH) were prepared: [Ln(H2O)(picOH)(2)(mu-HpicO)].3H(2)O (Ln = Eu, Tb, Er). The complexes were characterized using photoluminescence, infrared, Raman, and H-1 NMR spectroscopy, and elemental analysis. The crystal structure of [Eu(H2O)(picOH)(2)(mu-HpicO)] . 3H(2)O 1 was determined by X-ray diffraction. Compound 1 crystallizes in a monoclinic system with space group P2(1)/c and cell parameters a = 9.105(13) Angstrom, b = 18.796(25) Angstrom, and c = 13.531(17) Angstrom, and beta = 104.86(1) deg. The 3-hydroxypicolinate ligands coordinate through both N,O- or O,O- chelation to the lanthanide ions, as shown by X-ray and spectroscopic results. Photoluminescence measurements were performed for the Eu(III) and Tb(III) complexes; the Eu(III) complex was investigated in more detail. The Eu(III) compound is highly luminescent and acts as a photoactive center in nanocomposite materials whose host matrixes are silica nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New lanthanide complexes of 2-hydroxynicotinic acid (H(2)nicO) [Ln(HnicO)(2)(mu-HnicO)(H2O)] (.) nH(2)O (Ln = Eu, Gd, Tb, Er, Tm) were prepared. The crystal structures of the [Tb(HnicO)(2)(g-HnicO)(H2O)] (.) 1.75H(2)O(1) and [Eu(HniCO)(2)(mu-HnicO)(H2O)] (.) 1.25H(2)O (2) complexes were determined by X-ray diffraction. The 2-hydroxynicotinate ligand coordinates through O,O-chelation to the lanthanide(III) ions as shown by X-ray diffraction and the infrared, Raman and NMR spectroscopy results. Photoluminescence measurements were performed for the Eu(III) and Tb(III) complexes. Lifetimes of 0.592 +/- 0.007 and 0.113 +/- 0.002 ms were determined for the Eu3+ and Tb3+ emitting states D-5(0) and D-5(4), respectively. A value around 30% was found for the D-5(0) quantum efficiency. The energy transfer mechanisms between the lanthanide ions and the ligands are discussed and compared with those observed in similar complexes involving the 3-hydroxypicolinate ligand based on the luminescence of the respective Gd3+-based complexes. (C) 2003 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple general route of obtaining very stable octacoordinated non-oxovanadium( IV) complexes of the general formula VL2 (where H2L is a tetradentate ONNO donor) is presented. Six such complexes (1-6) are adequately characterized by elemental analysis, mass spectrometry, and various spectroscopic techniques. One of these compounds (1) has been structurally characterized. The molecule has crystallographic 4 symmetry and has a dodecahedral structure existing in a tetragonal space group P4n2. The non-oxo character and VL2 stoichiometry for all of the complexes are established from analytical and mass spectrometric data. In addition, the non-oxo character is clearly indicated by the complete absence of the strong nu(v=o) band in the 925-1025 cm(-1) region, which is a signature of all oxovanadium species. The complexes are quite stable in open air in the solid state and in solution, a phenomenon rarely observed in non-oxovanadium(IV) or bare vanadium(IV) complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interactions between hydroxypropylmethylcellulose (HPMC) and poly(acrylic acid) (PAA) as well as poly(methacrylic acid) (PMMA) resulting in formation of hydrophobic interpolymer complexes (IPC) via hydrogen bonding have been studied in aqueous solutions in acidic medium. The formation of IPC of two different compositions (2:1 and 4:1) has been detected for complexes of PAA and HPMC. The critical pH values for complexation of HPMC with PAA and PMAA were determined by the turbidimetric method. It was found that PAA shows the lower complexation ability compared to PMAA due to the more hydrophobic nature of the latter polyacid. The temperature-induced phase separation in HPMC-PAA solution mixtures depends greatly on the components ratio and PAA molecular weight. The complexation ability of hydroxypropylmethylcellulose with respect to poly(acrylic acid) was found to be similar to the complexation ability of methylcellulose, lower than that of hydroxypropylcellulose and higher than that of hydroxyethylcellulose. (c) 2006 Society of Chemical Industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Association of poly(carboxylic acids) and non-ionic polymers in solutions via hydrogen bonding results in formation of novel polymeric materials-interpolymer complexes. These materials can potentially be used for design of novel mucoadhesive dosage forms, development of solid drug dispersions and solubilisation of poorly soluble drugs, encapsulation technologies, preparation of nanoparticles, hydrogels, in situ gelling systems and electrically erodible materials. This review is an attempt to analyse and systematise existing literature on pharmaceutical application of hydrogen-bonded interpolymer complexes. (c) 2007 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of ionic single-tailed surfactants to aqueous solutions of EO18BO10 [EO = poly(ethylene oxide), BO = poly(1,2-butylene oxide), subscripts denote the number of repeating units] leads to the formation of vesicles, as probed by laser scanning confocal microscopy. Dynamic light scattering showed that the dimensions of these aggregates at early stages of development do not depend on the sign of the surfactant head group charge. Small-angle X-ray scattering (SAXS) analysis indicated the coexistence of smaller micelles of different sizes and varying polymer content in solution. In strong contrast to the dramatic increase of size of dispersed particles induced by surfactants in dilute solution, the d-spacing of corresponding mesophases reduces monotonically upon increasing surfactant loading. This effect points to the suppression of vesicles as a consequence of increasing ionic strength in concentrated solutions. Maximum enhancements of storage modulus and thermal stability of hybrid gels take place at different compositions, indicating a delicate balance between the number and size of polymer-poor aggregates (population increases with surfactant loading) and the number and size of polymer−surfactant complexes (number and size decrease in high surfactant concentrations).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myoglobin has been studied in considerable detail using different experimental and computational techniques over the past decades. Recent developments in time-resolved spectroscopy have provided experimental data amenable to detailed atomistic simulations. The main theme of the present review are results on the structures, energetics and dynamics of ligands ( CO, NO) interacting with myoglobin from computer simulations. Modern computational methods including free energy simulations, mixed quantum mechanics/molecular mechanics simulations, and reactive molecular dynamics simulations provide insight into the dynamics of ligand dynamics in confined spaces complementary to experiment. Application of these methods to calculate and understand experimental observations for myoglobin interacting with CO and NO are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we present for the first time accurate density functional theory (DFT) and time-dependent (TD) DFT data for a series of electronically unsaturated five-coordinate complexes [Mn(CO)(3)(L-2)](-), where L-2 stands for a chelating strong pi-donor ligand represented by catecholate, dithiolate, amidothiolate, reduced alpha-diimine (1,4-dialkyl-1,4-diazabutadiene (R-DAB), 2,2'-bipyridine) and reduced 2,2'-biphosphinine types. The single-crystal X-ray structure of the unusual compound [Na(BPY)][Mn(CO)(3)(BPY)]center dot Et2O and the electronic absorption spectrum of the anion [Mn(CO)(3)(BPY)](-) are new in the literature. The nature of the bidentate ligand determines the bonding in the complexes, which varies between two limiting forms: from completely pi-delocalized diamagnetic {(CO)(3)Mn-L-2}(-) for L-2 = alpha-diimine or biphosphinine, to largely valence-trapped {(CO)(3)Mn-1-L-2(2-)}(-) for L-2(2-) = catecholate, where the formal oxidation states of Mn and L-2 can be assigned. The variable degree of the pi-delocalization in the Mn(L-2) chelate ring is indicated by experimental resonance Raman spectra of [Mn(CO)(3)(L-2)](-) (L-2=3,5-di-tBu-catecholate and iPr-DAB), where accurate assignments of the diagnostically important Raman bands have been aided by vibrational analysis. The L-2 = catecholate type of complexes is known to react with Lewis bases (CO substitution, formation of six-coordinate adducts) while the strongly pi-delocalized complexes are inert. The five-coordinate complexes adopt usually a distorted square pyramidal geometry in the solid state, even though transitions to a trigonal bipyramid are also not rare. The experimental structural data and the corresponding DFT-computed values of bond lengths and angles are in a very good agreement. TD-DFT calculations of electronic absorption spectra of the studied Mn complexes and the strongly pi-delocalized reference compound [Fe(CO)(3)(Me-DAB)] have reproduced qualitatively well the experimental spectra. Analyses of the computed electronic transitions in the visible spectroscopic region show that the lowest-energy absorption band always contains a dominant (in some cases almost exclusive) contribution from a pi(HOMO) -> pi*(LUMO) transition within the MnL2 metallacycle. The character of this optical excitation depends strongly on the composition of the frontier orbitals, varying from a partial L-2 -> Mn charge transfer (LMCT) through a fully delocalized pi(MnL2) -> pi*(MnL2) situation to a mixed (CO)Mn -> L-2 charge transfer (LLCT/MLCT). The latter character is most apparent in the case of the reference complex [Fe(CO)(3)(Me-DAB)]. The higher-lying, usually strongly mixed electronic transitions in the visible absorption region originate in the three lower-lying occupied orbitals, HOMO - 1 to HOMO - 3, with significant metal-d contributions. Assignment of these optical excitations to electronic transitions of a specific type is difficult. A partial LLCT/MLCT character is encountered most frequently. The electronic absorption spectra become more complex when the chelating ligand L-2, such as 2,2'-bipyridine, features two or more closely spaced low-lying empty pi* orbitals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dinuclear complex [(tpy)Ru-II(PCP-PCP)Ru-II(tPY)]Cl-2 (bridging PCP-PCP = 3,3',5,5'-tetrakis(diphenylphosphinomethyl)biphenyl, [C6H2(CH2PPh2)(2)-3,5](2)(2-)) was prepared via a transcyclometalation reaction of the bis-pincer ligand [PC(H)P-PC(H)P] and the Ru(II) precursor [Ru(NCN)(tpy)]Cl (NCN = [C6H3(CH2NMe2)(2)-2,6](-)) followed by a reaction with 2,2':6',2 ''-terpyridine (tpy). Electrochemical and spectroscopic properties of [(tpy)Ru-II(PCP-PCP)Ru-II(tPY)]Cl-2 are compared with those of the closely related [(tpy)Ru-II(NCN-NCN)Ru-II(tpy)](PF6)(2) (NCN-NCN = [C6H2(CH2- NMe2)(2)-3,5](2)(2-)) obtained by two-electron reduction of [(tpy)Ru-III(NCN-NCN)Ru-III(tpy)](PF6)(4). The molecular structure of the latter complex has been determined by single-crystal X-ray structure determination. One-electron reduction of [(tpy)Ru-III(NCN-NCN)Ru-III(tpy)](PF6)(4) and one-electron oxidation of [(tpy)Ru-II(PCP-PCP)RUII(tpy)]Cl-2 yielded the mixed-valence species [(tpy)Ru-III(NCN-NCN)RUII(tpy)](3+) and [(tpy)Ru-III(PCP-PCP)RUII(tpy)](3+), respectively. The comproportionation equilibrium constants K-c (900 and 748 for [(tpy)Ru-III(NCN-NCN)Ru-III(tpy)](4+) and [(tpy)Ru-II(PCP-PCP)RUII(tpy)](2+), respectively) determined from cyclic voltammetric data reveal comparable stability of the [Ru-III-Ru-II] state of both complexes. Spectroelectrochemical measurements and near-infrared (NIR) spectroscopy were employed to further characterize the different redox states with special focus on the mixed-valence species and their NIR bands. Analysis of these bands in the framework of Hush theory indicates that the mixed-valence complexes [(tpy)Ru-III(PCP-PCP)RUII(tpy)](3+) and [(tpy)Ru-III(NCN-NCN)RUII(tpy)](3+) belong to strongly coupled borderline Class II/Class III and intrinsically coupled Class III systems, respectively. Preliminary DFT calculations suggest that extensive delocalization of the spin density over the metal centers and the bridging ligand exists. TD-DFT calculations then suggested a substantial MLCT character of the NIR electronic transitions. The results obtained in this study point to a decreased metal-metal electronic interaction accommodated by the double-cyclometalated bis-pincer bridge when strong sigma-donor NMe2 groups are replaced by weak sigma-donor, pi-acceptor PPh2 groups

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ electrolysis within an optically transparent thin-layer electrochemical (OTTLE) cell was applied at 293-243 K in combination with FTIR spectroscopy to monitor spectral changes in the carbonyl stretching region accompanying oxidation of four tetracarbonyl olefin complexes of tungsten(0), viz., trans-[W(CO)(4)(eta(2)-ethene)(2)], trans-[W(CO)(4)(eta(2)-norbornene)(2)], [W(CO)(4)(eta(4)-cycloocta-1,5-diene)], and [W(CO)(4)(eta(4)-norbornadiene)]. In all cases, the one-electron-oxidized radical cations (17-electron complexes) have been identified by their characteristic nu(CO) patterns. For the bidentate diene ligands, the cis stereochemistry is essentially fixed in both the 18- and 17-electron complexes. The radical cation of the trans-bis(ethene) complex was observed only at 243 K, while at room temperature it isomerized rapidly to the corresponding cis-isomer. The thermal stability of the three studied radical cations in the cis configuration correlates with the relative strength of the W-CO bonds in the positions trans to the olefin ligand, which are more affected by the oxidation than the axial W-CO bonds. For the bulky norbornene ligands, their trans configuration in the bis(norbornene) complex remains preserved after the oxidation in the whole temperature range studied. The limited thermal stability of the radical cations of the trans-bis(alkene) complexes is ascribed to dissociation of the alkene ligands. The spectroelectrochemical results are in very good agreement with data obtained earlier by DFT (B3LYP) calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The syntheses and spectroscopic characterization of two 1,2,4-triazole-based oxovanadium(V) complexes are reported: 1(-)[VO(2)L1](-) and 2 [(VOL2)(2)(OMe)(2)] (where H(2)L1 = 3-(2'-hydroxyphenyl)-5-(pyridin-2"-yl)-H-1-1,2,4-triazole, H3L2 = bis-3,5-(2'-hydroxyphenyl)-1H-1,2,4-triazole). The ligand environment (N,N,O vs O,N,O) is found to have a profound influence on the properties and reactivity of the complexes formed. The presence of the triazolato ligand allows for pH tuning of the spectroscopic and electrochemical properties, as well as the interaction and stability of the complexes in the presence of hydrogen peroxide. The vanadium(IV) oxidation states were generated electrochemically and characterized by UV-vis and EPR spectroscopies, For 2, under acidic conditions, rapid exchange of the methoxide ligands with solvent [in particular, in the vanadium(IV) redox state] was observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A palladium-catalyzed Stille coupling reaction was employed as a versatile method for the synthesis of a novel terpyridine-pincer (3, TPBr) bridging ligand, 4'-{4-BrC6H2(CH2NMe2)(2)-3,5}-2,2':6',2 ''-terpyridine. Mononuclear species [PdX(TP)] (X = Br, Cl), [Ru(TPBr)(tpy)](PF6)(2), and [Ru(TPBr)(2)](PF6)(2), synthesized by selective metalation of the NCNBr-pincer moiety or complexation of the terpyridine of the bifunctional ligand TPBr, were used as building blocks for the preparation of heterodi- and trimetallic complexes [Ru(TPPdCl)(tpy)](PF6)(2) (7) and [Ru(TPPdCl)(2)]-(PF6)(2) (8). The molecular structures in the solid state of [PdBr(TP)] (4a) and [Ru(TPBr)(2)](PF6)(2) (6) have been determined by single-crystal X-ray analysis. Electrochemical behavior and photophysical properties of the mono-and heterometallic complexes are described. All the above di- and trimetallic Ru complexes exhibit absorption bands attributable to (MLCT)-M-1 (Ru -> tpy) transitions. For the heteroleptic complexes, the transitions involving the unsubstituted tpy ligand are at a lower energy than the tpy moiety of the TPBr ligand. The absorption bands observed in the electronic spectra for TPBr and [PdCl(TP)] have been assigned with the aid of TD-DFT calculations. All complexes display weak emission both at room temperature and in a butyronitrile glass at 77 K. The considerable red shift of the emission maxima relative to the signal of the reference compound [Ru(tpy)(2)](2+) indicates stabilization of the luminescent (MLCT)-M-3 state. For the mono- and heterometallic complexes, electrochemical and spectroscopic studies (electronic absorption and emission spectra and luminescence lifetimes recorded at room temperature and 77 K in nitrile solvents), together with the information gained from IR spectroelectrochemical studies of the dimetallic complex [Ru(TPPdSCN)(tpy)](PF6)(2), are indicative of charge redistribution through the bridging ligand TPBr. The results are in line with a weak coupling between the {Ru(tpy)(2)} chromophoric unit and the (non)metalated NCN-pincer moiety.