271 resultados para atmospheric transmissivity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

2011 is the centenary year of the short paper (Wilson,1911) first describing the cloud chamber, the device for visualising high-energy charged particles which earned the Scottish physicist Charles Thomas Rees (‘CTR’) Wilson the 1927 Nobel Prize for physics. His many achievements in atmospheric science, some of which have current relevance, are briefly reviewed here. CTR Wilson’s lifetime of scientific research work was principally in atmospheric electricity at the Cavendish Laboratory, Cambridge; he was Reader in Electrical Meteorology from 1918 and Jacksonian Professor from 1925 to 1935. However, he is immortalised in physics for his invention of the cloud chamber, because of its great significance as an early visualisation tool for particles such as cosmic rays1 (Galison, 1997). Sir Lawrence Bragg summarised its importance:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A description is given of the global atmospheric electric circuit operating between the Earth’s surface and the ionosphere. Attention is drawn to the huge range of horizontal and vertical spatial scales, ranging from 10−9 m to 1012 m, concerned with the many important processes at work. A similarly enormous range of time scales is involved from 10−6 s to 109 s, in the physical effects and different phenomena that need to be considered. The current flowing in the global circuit is generated by disturbed weather such as thunderstorms and electrified rain/shower clouds, mostly occurring over the Earth’s land surface. The profile of electrical conductivity up through the atmosphere, determined mainly by galactic cosmic ray ionization, is a crucial parameter of the circuit. Model simulation results on the variation of the ionospheric potential, ∼250 kV positive with respect to the Earth’s potential, following lightning discharges and sprites are summarized. Experimental results comparing global circuit variations with the neutron rate recorded at Climax, Colorado, are then discussed. Within the return (load) part of the circuit in the fair weather regions remote from the generators, charge layers exist on the upper and lower edges of extensive layer clouds; new experimental evidence for these charge layers is also reviewed. Finally, some directions for future research in the subject are suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Future high levels of atmospheric carbon dioxide (CO2) may increase biomass production of terrestrial plants and hence plant requirements for soil mineral nutrients to sustain a greater biomass production. Phosphorus (P), an element essential for plant growth, is found in soils both in inorganic and in organic forms. In this work, three genotypes of Populus were grown under ambient and elevated atmospheric CO2 concentrations (FACE) for 5 years. An N fertilisation treatment was added in years 4 and 5 after planting. Using a fractionation scheme, total P was sequentially extracted using H2O, NaOH, HCl and HNO3, and P determined as both molybdate (Mo) reactive and total P. Molybdate-reactive P is defined as mainly inorganic but also some labile organic P which is determined by Vanado-molybdophosphoric acid colorimetric methods. Organic P was also measured to assess all plant available and weatherable P pools. We tested the hypotheses that higher P demand due to increased growth is met by a depletion of easily weatherable soil P pools, and that increased biomass inputs increases the amount of organic P in the soil. The concentration of organic P increased under FACE, but was associated with a decrease in total soil organic matter. The greatest increase in the soil P due to elevated CO2 was found in the HCl-extractable P fraction in the non-fertilised treatment. In the NaOH-extractable fraction the Mo-reactive P increased under FACE, but total P did not differ between ambient and FACE. The increase in both the NaOH- and HCl-extractable fractions was smaller after N addition. The results showed that elevated atmospheric CO2 has a positive effect on soil P availability rather than leading to depletion.We suggest that the increase in the NaOH- and HCl-extractable fractions is biologically driven by organic matter mineralization, weathering and mycorrhizal hyphal turnover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pacific ocean temperature anomalies associated with the El Niño–Southern Oscillation (ENSO) modulate atmospheric convection and hence thunderstorm electrification. The generated current flows globally via the atmospheric electric circuit, which can be monitored anywhere on Earth. Atmospheric electricity measurements made at Shetland (in Scotland) display a mean global circuit response to ENSO that is characterized by strengthening during 'El Niño' conditions, and weakening during 'La Niña' conditions. Examining the hourly varying response indicates that a potential gradient (PG) increase around noon UT is likely to be associated with a change in atmospheric convection and resultant lightning activity over equatorial Africa and Eastern Asia. A secondary increase in PG just after midnight UT can be attributed to more shower clouds in the central Pacific ocean during an 'El Niño'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four protocols involving the application of low pressures, either toward the end of frying or after frying, were investigated with the aim of lowering the oil content of potato chips. Protocol 1 involving frying at atmospheric pressure followed by a 3 min draining time constituted the control. Protocol 2 involved lowering of pressure to 13.33 kPa, 40 s before the end of frying, followed by draining for 3 min at the same pressure. Protocol 3 was the same as protocol 2, except that the pressure was lowered 3 s before the end of frying. Protocol 4 involved lowering the pressure to 13.33 kPa after the product was lifted from the oil and holding it at this value over the draining time of 3 min. Protocol 4 gave a product having the lowest oil content (37.12 g oil/100 g defatted dry matter), while protocol 2 gave the product with highest oil content (71.10 g oil/100 g defatted dry matter), followed by those obtained using protocols 1 and 3(68.48 g oil/100 g defatted dry matter and 52.50 g oil/100 g defatted dry matter, respectively). Protocol 4 was further evaluated to study the effects of draining times and vacuum applied, and compared with the control. It was noted that over the modest range of pressures investigated, there was no significant effect of the vacuum applied on the oil content of the product. This study demonstrates that the oil content of potato chips can be lowered significantly by combining atmospheric frying with draining under vacuum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Certain algebraic combinations of single scattering albedo and solar radiation reflected from, or transmitted through, vegetation canopies do not vary with wavelength. These ‘‘spectrally invariant relationships’’ are the consequence of wavelength independence of the extinction coefficient and scattering phase function in veg- etation. In general, this wavelength independence does not hold in the atmosphere, but in cloud-dominated atmospheres the total extinction and total scattering phase function vary only weakly with wavelength. This paper identifies the atmospheric conditions under which the spectrally invariant approximation can accu- rately describe the extinction and scattering properties of cloudy atmospheres. The validity of the as- sumptions and the accuracy of the approximation are tested with 1D radiative transfer calculations using publicly available radiative transfer models: Discrete Ordinate Radiative Transfer (DISORT) and Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART). It is shown for cloudy atmospheres with cloud optical depth above 3, and for spectral intervals that exclude strong water vapor absorption, that the spectrally invariant relationships found in vegetation canopy radiative transfer are valid to better than 5%. The physics behind this phenomenon, its mathematical basis, and possible applications to remote sensing and climate are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric aerosol acts to both reduce the background concentration of natural cluster ions, and to attenuate optical propagation. Hence, the presence of aerosol has two consequences, the reduction of the air’s electrical conductivity and the visual range. Ion-aerosol theory and Koschmieder’s visibility theory are combined here to derive the related non-linear variation of the atmospheric electric potential gradient with visual range. A substantial sensitivity is found under poor visual range conditions, but, for good visual range conditions the sensitivity diminishes and little influence of local aerosol on the fair weather potential gradient occurs. This allows visual range measurements, made simply and routinely at many meteorological sites, to provide inference about the local air’s electrical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The global behavior of the extratropical tropopause transition layer (ExTL) is investigated using O3, H2O, and CO measurements from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on Canada’s SCISAT-1 satellite obtained between February 2004 and May 2007. The ExTL depth is derived using H2O-O3 and CO-O3 correlations. The ExTL top derived from H2O-O3 shows an increase from roughly 1–1.5 km above the thermal tropopause in the subtropics to 3–4 km (2.5–3.5 km) in the north (south) polar region, implying somewhat weaker tropospherestratosphere- transport in the Southern Hemisphere. The ExTL bottom extends ~1 km below the thermal tropopause, indicating a persistent stratospheric influence on the troposphere at all latitudes. The ExTL top derived from the CO-O3 correlation is lower, at 2 km or ~345 K (1.5 km or ~335 K) in the Northern (Southern) Hemisphere. Its annual mean coincides with the relative temperature maximum just above the thermal tropopause. The vertical CO gradient maximizes at the thermal tropopause, indicating a local minimum in mixing within the tropopause region. The seasonal changes in and the scales of the vertical H2O gradients show a similar pattern as the static stability structure of the tropopause inversion layer (TIL), which provides observational support for the hypothesis that H2O plays a radiative role in forcing and maintaining the structure of the TIL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predicting how insect crop pests will respond to global climate change is an important part of increasing crop production for future food security, and will increasingly rely on empirically based evidence. The effects of atmospheric composition, especially elevated carbon dioxide (eCO(2)), on insect herbivores have been well studied, but this research has focussed almost exclusively on aboveground insects. However, responses of root-feeding insects to eCO(2) are unlikely to mirror these trends because of fundamental differences between aboveground and belowground habitats. Moreover, changes in secondary metabolites and defensive responses to insect attack under eCO(2) conditions are largely unexplored for root herbivore interactions. This study investigated how eCO(2) (700 mu mol mol-1) affected a root-feeding herbivore via changes to plant growth and concentrations of carbon (C), nitrogen (N) and phenolics. This study used the root-feeding vine weevil, Otiorhynchus sulcatus and the perennial crop, Ribes nigrum. Weevil populations decreased by 33% and body mass decreased by 23% (from 7.2 to 5.4 mg) in eCO(2). Root biomass decreased by 16% in eCO(2), which was strongly correlated with weevil performance. While root N concentrations fell by 8%, there were no significant effects of eCO(2) on root C and N concentrations. Weevils caused a sink in plants, resulting in 8-12% decreases in leaf C concentration following herbivory. There was an interactive effect of CO(2) and root herbivory on root phenolic concentrations, whereby weevils induced an increase at ambient CO(2), suggestive of defensive response, but caused a decrease under eCO(2). Contrary to predictions, there was a positive relationship between root phenolics and weevil performance. We conclude that impaired root-growth underpinned the negative effects of eCO(2) on vine weevils and speculate that the plant's failure to mount a defensive response at eCO(2) may have intensified these negative effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More than 30 epiphytic lichens, collected in Agadir (Morroco) and along a 150-km transect from the Atlantic Ocean eastward, were analyzed for their metal content and lead isotopic composition. This dataset was used to evaluate atmospheric metal contamination and the impact of the city on the surrounding area. The concentrations of Cu, Pb, and Zn (average ± 1 SD) were 20.9 ± 15.2 μg g−1, 13.8 ± 9.0 μg g−1, and 56.6 ± 26.6 μg g−1, respectively, with the highest values observed in lichens collected within the urban area. The 206Pb/207Pb and 208Pb/207Pb ratios in the lichens varied from 1.146 to 1.186 and from 2.423 to 2.460, respectively. Alkyllead-gasoline sold in Morocco by the major petrol companies gave isotopic ratios of 206Pb/207Pb = 1.076–1.081 and 208Pb/207Pb = 2.348–2.360. These new, homogeneous values for gasoline-derived lead improve and update the scarce isotopic database of potential lead sources in Morocco, and may be of great value to future environmental surveys on the presence of lead in natural reservoirs, where it persists over time (e.g., soils and sediments). The interest of normalizing metal concentrations in lichens to concentrations of a lithogenic element is demonstrated by the consistency of the results thus obtained with lead isotopic ratios. Leaded gasoline contributed less than 50% of the total amount of lead accumulated in lichens, even in areas subject to high vehicular traffic. This strongly suggests that the recent banishment of leaded gasoline in Morocco will not trigger a drastic improvement in air quality, at least in Agadir.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper represents a study of the transient changes occurring in temperature, and moisture and oil contents during the so called “post-frying drainage”—which is the duration for which a product is held in the head space of the fryer after it is removed from the oil. Since most of the oil adhering to the product penetrates into the structure during this period, this paper examines the effects of applying vacuum during drainage (1.33 kPa) to maintain the product temperature consistently above the water saturation temperature corresponding to the prevailing pressure (11 °C), which potentially eliminates water condensation and prevents the occluded surface oil from penetrating into the product structure. Draining under vacuum significantly lowers the oil content of potato chips by 38% compared to atmospheric drainage. This phenomenon can be further confirmed by confocal laser scanning microscopy (CLSM) images, which show that the boundary between the core and the crust regions is clearly visible in the case of vacuum drainage, whereas in the case of atmospheric drainage, the oil is distributed throughout the structure. Unfortunately, the same approach did not reduce the oil content of French fries—the oil content of vacuum-drained product was found similar to the product obtained by draining under atmospheric pressure. This is because the reduction in oil content only occurs when there is net moisture evaporation from the product and the evaporation rate is sufficient to force out the oil from the product; this was clearly not the case with French fries. The CLSM images show that the oil distribution in the products drained under atmospheric pressure and vacuum was similar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation deals with aspects of sequential data assimilation (in particular ensemble Kalman filtering) and numerical weather forecasting. In the first part, the recently formulated Ensemble Kalman-Bucy (EnKBF) filter is revisited. It is shown that the previously used numerical integration scheme fails when the magnitude of the background error covariance grows beyond that of the observational error covariance in the forecast window. Therefore, we present a suitable integration scheme that handles the stiffening of the differential equations involved and doesn’t represent further computational expense. Moreover, a transform-based alternative to the EnKBF is developed: under this scheme, the operations are performed in the ensemble space instead of in the state space. Advantages of this formulation are explained. For the first time, the EnKBF is implemented in an atmospheric model. The second part of this work deals with ensemble clustering, a phenomenon that arises when performing data assimilation using of deterministic ensemble square root filters in highly nonlinear forecast models. Namely, an M-member ensemble detaches into an outlier and a cluster of M-1 members. Previous works may suggest that this issue represents a failure of EnSRFs; this work dispels that notion. It is shown that ensemble clustering can be reverted also due to nonlinear processes, in particular the alternation between nonlinear expansion and compression of the ensemble for different regions of the attractor. Some EnSRFs that use random rotations have been developed to overcome this issue; these formulations are analyzed and their advantages and disadvantages with respect to common EnSRFs are discussed. The third and last part contains the implementation of the Robert-Asselin-Williams (RAW) filter in an atmospheric model. The RAW filter is an improvement to the widely popular Robert-Asselin filter that successfully suppresses spurious computational waves while avoiding any distortion in the mean value of the function. Using statistical significance tests both at the local and field level, it is shown that the climatology of the SPEEDY model is not modified by the changed time stepping scheme; hence, no retuning of the parameterizations is required. It is found the accuracy of the medium-term forecasts is increased by using the RAW filter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Northern Hemisphere tropical cyclone (TC) activity is investigated in multiyear global climate simulations with theECMWFIntegrated Forecast System (IFS) at 10-km resolution forced by the observed records of sea surface temperature and sea ice. The results are compared to analogous simulationswith the 16-, 39-, and 125-km versions of the model as well as observations. In the North Atlantic, mean TC frequency in the 10-km model is comparable to the observed frequency, whereas it is too low in the other versions. While spatial distributions of the genesis and track densities improve systematically with increasing resolution, the 10-km model displays qualitatively more realistic simulation of the track density in the western subtropical North Atlantic. In the North Pacific, the TC count tends to be too high in thewest and too low in the east for all resolutions. These model errors appear to be associated with the errors in the large-scale environmental conditions that are fairly similar in this region for all model versions. The largest benefits of the 10-km simulation are the dramatically more accurate representation of the TC intensity distribution and the structure of the most intense storms. The model can generate a supertyphoon with a maximum surface wind speed of 68.4 m s21. The life cycle of an intense TC comprises intensity fluctuations that occur in apparent connection with the variations of the eyewall/rainband structure. These findings suggest that a hydrostatic model with cumulus parameterization and of high enough resolution could be efficiently used to simulate the TC intensity response (and the associated structural changes) to future climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides an introduction to the Special Issue on “Climate Change and Coupling of Macronutrient Cycles along the Atmospheric, Terrestrial, Freshwater and Estuarine Continuum”, dedicated to Colin Neal on his retirement. It is not intended to be a review of this vast subject, but an attempt to synthesize some of the major findings from the 22 contributions to the Special Issue in the context of what is already known. The major research challenges involved in understanding coupled macronutrient cycles in these environmental media are highlighted, and the difficulties of making credible predictions of the effects of climate change are discussed. Of particular concern is the possibility of interactions which will enhance greenhouse gas concentrations and provide positive feedback to global warming.