319 resultados para atlantic multidecadal oscillation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ 1] We have used a fully coupled chemistry-climate model (CCM), which generates its own wind and temperature quasi-biennial oscillation (QBO), to study the effect of coupling on the QBO and to examine the QBO signals in stratospheric trace gases, particularly ozone. Radiative coupling of the interactive chemistry to the underlying general circulation model tends to prolong the QBO period and to increase the QBO amplitude in the equatorial zonal wind in the lower and middle stratosphere. The model ozone QBO agrees well with Stratospheric Aerosol and Gas Experiment II and Total Ozone Mapping Spectrometer satellite observations in terms of vertical and latitudinal structure. The model captures the ozone QBO phase change near 28 km over the equator and the column phase change near +/- 15 degrees latitude. Diagnosis of the model chemical terms shows that variations in NOx are the main chemical driver of the O-3 QBO around 35 km, i.e., above the O-3 phase change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ 1] A rapid increase in the variety, quality, and quantity of observations in polar regions is leading to a significant improvement in the understanding of sea ice dynamic and thermodynamic processes and their representation in global climate models. We assess the simulation of sea ice in the new Hadley Centre Global Environmental Model (HadGEM1) against the latest available observations. The HadGEM1 sea ice component uses elastic-viscous-plastic dynamics, multiple ice thickness categories, and zero-layer thermodynamics. The model evaluation is focused on the mean state of the key variables of ice concentration, thickness, velocity, and albedo. The model shows good agreement with observational data sets. The variability of the ice forced by the North Atlantic Oscillation is also found to agree with observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the second half of the twentieth century the Indian Ocean exhibited a rapid rise in sea surface temperatures (SST). It has been argued - largely on the basis of experiments with atmospheric GCMs - that this rapid warming was an important cause of remote changes in climate, in particular an increasing trend in the North Atlantic Oscillation Index and decreases in African rainfall. Here however we present evidence that the Indian Ocean warming was associated with local increases in sea level pressure (SLP). These increases are inconsistent with results from experiments in which an atmospheric GCM is forced by historical SST, which show robust decreases in SLP. The clear discrepancy between the observed and simulated trends in SLP suggests that the response of some atmospheric GCMs to the Indian Ocean warming may not provide a reliable guide to the behaviour of the real world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The uptake and storage of anthropogenic carbon in the North Atlantic is investigated using different configurations of ocean general circulation/carbon cycle models. We investigate how different representations of the ocean physics in the models, which represent the range of models currently in use, affect the evolution of CO2 uptake in the North Atlantic. The buffer effect of the ocean carbon system would be expected to reduce ocean CO2 uptake as the ocean absorbs increasing amounts of CO2. We find that the strength of the buffer effect is very dependent on the model ocean state, as it affects both the magnitude and timing of the changes in uptake. The timescale over which uptake of CO2 in the North Atlantic drops to below preindustrial levels is particularly sensitive to the ocean state which sets the degree of buffering; it is less sensitive to the choice of atmospheric CO2 forcing scenario. Neglecting physical climate change effects, North Atlantic CO2 uptake drops below preindustrial levels between 50 and 300 years after stabilisation of atmospheric CO2 in different model configurations. Storage of anthropogenic carbon in the North Atlantic varies much less among the different model configurations, as differences in ocean transport of dissolved inorganic carbon and uptake of CO2 compensate each other. This supports the idea that measured inventories of anthropogenic carbon in the real ocean cannot be used to constrain the surface uptake. Including physical climate change effects reduces anthropogenic CO2 uptake and storage in the North Atlantic further, due to the combined effects of surface warming, increased freshwater input, and a slowdown of the meridional overturning circulation. The timescale over which North Atlantic CO2 uptake drops to below preindustrial levels is reduced by about one-third, leading to an estimate of this timescale for the real world of about 50 years after the stabilisation of atmospheric CO2. In the climate change experiment, a shallowing of the mixed layer depths in the North Atlantic results in a significant reduction in primary production, reducing the potential role for biology in drawing down anthropogenic CO2.