147 resultados para adaptive functioning
Resumo:
Mycorrhizal associations occur in a range of habitats in which soils are subject to low temperature (≤15 °C) for a significant part of the year. Despite this, most of our understanding of mycorrhizal fungi and their interactions with their plant hosts is based on physiological investigations conducted in the range 20–37 °C using fungi of temperate origin. Comparatively little consideration has been given to the cold edaphic conditions in which many mycorrhizas survive and prosper, and the physiological and ecological consequences of their low temperature environments. In this review, we consider the distribution and persistence of arbuscular and ectomycorrhizal mycorrhizal associations in cold environments and highlight progress in understanding adaptations to freezing resistance and nutrient acquisition at low temperature in mycorrhizal fungi.
Resumo:
Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs.
Resumo:
Adaptive behaviour of plants, including rapid changes in physiology, gene regulation and defence response, can be altered when linked to neighbouring plants by a mycorrhizal network (MN). Mechanisms underlying the behavioural changes include mycorrhizal fungal colonization by the MN or interplant communication via transfer of nutrients, defence signals or allelochemicals. We focus this review on our new findings in ectomycorrhizal ecosystems, and also review recent advances in arbuscular mycorrhizal systems. We have found that the behavioural changes in ectomycorrhizal plants depend on environmental cues, the identity of the plant neighbour and the characteristics of the MN. The hierarchical integration of this phenomenon with other biological networks at broader scales in forest ecosystems, and the consequences we have observed when it is interrupted, indicate that underground ‘tree talk’ is a foundational process in the complex adaptive nature of forest ecosystems.
Resumo:
Background Appropriately conducted adaptive designs (ADs) offer many potential advantages over conventional trials. They make better use of accruing data, potentially saving time, trial participants, and limited resources compared to conventional, fixed sample size designs. However, one can argue that ADs are not implemented as often as they should be, particularly in publicly funded confirmatory trials. This study explored barriers, concerns, and potential facilitators to the appropriate use of ADs in confirmatory trials among key stakeholders. Methods We conducted three cross-sectional, online parallel surveys between November 2014 and January 2015. The surveys were based upon findings drawn from in-depth interviews of key research stakeholders, predominantly in the UK, and targeted Clinical Trials Units (CTUs), public funders, and private sector organisations. Response rates were as follows: 30(55 %) UK CTUs, 17(68 %) private sector, and 86(41 %) public funders. A Rating Scale Model was used to rank barriers and concerns in order of perceived importance for prioritisation. Results Top-ranked barriers included the lack of bridge funding accessible to UK CTUs to support the design of ADs, limited practical implementation knowledge, preference for traditional mainstream designs, difficulties in marketing ADs to key stakeholders, time constraints to support ADs relative to competing priorities, lack of applied training, and insufficient access to case studies of undertaken ADs to facilitate practical learning and successful implementation. Associated practical complexities and inadequate data management infrastructure to support ADs were reported as more pronounced in the private sector. For funders of public research, the inadequate description of the rationale, scope, and decision-making criteria to guide the planned AD in grant proposals by researchers were all viewed as major obstacles. Conclusions There are still persistent and important perceptions of individual and organisational obstacles hampering the use of ADs in confirmatory trials research. Stakeholder perceptions about barriers are largely consistent across sectors, with a few exceptions that reflect differences in organisations’ funding structures, experiences and characterisation of study interventions. Most barriers appear connected to a lack of practical implementation knowledge and applied training, and limited access to case studies to facilitate practical learning. Keywords: Adaptive designs; flexible designs; barriers; surveys; confirmatory trials; Phase 3; clinical trials; early stopping; interim analyses
Resumo:
This paper reports on the findings of the pragmatic abilities of Greek-speaking children with autism spectrum disorders (ASD). Twenty high functioning children with ASD and their typically developing age and vocabulary controls were administered a pragmatics task. The task was based on the Diagnostic Evaluation of Language Variation (DELV) in the context of a larger study targeting the grammar of Greek-speaking children with autism, and assessed the children’s abilities in communicative role taking, narrative, and question asking. The children with ASD showed an uneven profile in their pragmatic abilities. The two groups did not differ in communicative role taking and question asking. However, the children with ASD had difficulties on the narrative task, and more specifically, on the items assessing reference contrast and temporal links. Yet, they performed similarly on the mental state representations and the false beliefs items. Despite their good performance on mental states and false beliefs, the ASD children’s lower performance on reference contrast can be interpreted via Theory of Mind deficits if we assume that the former involve an additional level of complexity; namely, quantifying the amount of information available to the listener. Lower performance on temporal links is in line with the ASD children’s attested difficulties in organizing events into a coherent gist. Their overall profile, and, in particular, the dissociation between the different sections of the task, does not support single deficit accounts. It rather indicates that the deficits of individuals with ASD stem from distinct deficits in core cognitive processes (Happé & Frith, 2006).
Resumo:
This paper aims to critically examine the application of Predicted Mean Vote (PMV) in an air-conditioned environment in the hot-humid climate region. Experimental studies have been conducted in a climate chamber in Chongqing, China, from 2008 to 2010. A total of 440 thermal responses from participants were obtained. Data analysis reveals that the PMV overestimates occupants' mean thermal sensation in the warm environment (PMV > 0) with a mean bias of 0.296 in accordance with the ASHRAE thermal sensation scales. The Bland–Altman method has been applied to assess the agreement of the PMV and Actual Mean Vote (AMV) and reveals a lack of agreement between them. It is identified that habituation due to the past thermal experience of a long-term living in a specific region could stimulate psychological adaptation. The psychological adaptation can neutralize occupants’ actual thermal sensation by moderating the thermal sensibility of the skin. A thermal sensation empirical model and a PMV-revised index are introduced for air-conditioned indoor environments in hot-humid regions. As a result of habituation, the upper limit effective thermal comfort temperature SET* can be increased by 1.6 °C in a warm season based on the existing international standard. As a result, a great potential for energy saving from the air-conditioning system in summer could be achieved.
Resumo:
Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se.
Resumo:
The notion that large body size confers some intrinsic advantage to biological species has been debated for centuries. Using a phylogenetic statistical approach that allows the rate of body size evolution to vary across a phylogeny, we find a long-term directional bias toward increasing size in the mammals. This pattern holds separately in 10 of 11 orders for which sufficient data are available and arises from a tendency for accelerated rates of evolution to produce increases, but not decreases, in size. On a branch-by-branch basis, increases in body size have been more than twice as likely as decreases, yielding what amounts to millions and millions of years of rapid and repeated increases in size away from the small ancestral mammal. These results are the first evidence, to our knowledge, from extant species that are compatible with Cope’s rule: the pattern of body size increase through time observed in the mammalian fossil record. We show that this pattern is unlikely to be explained by several nonadaptive mechanisms for increasing size and most likely represents repeated responses to new selective circumstances. By demonstrating that it is possible to uncover ancient evolutionary trends from a combination of a phylogeny and appropriate statistical models, we illustrate how data from extant species can complement paleontological accounts of evolutionary history, opening up new avenues of investigation for both.
Resumo:
Climate change poses new challenges to cities and new flexible forms of governance are required that are able to take into account the uncertainty and abruptness of changes. The purpose of this paper is to discuss adaptive climate change governance for urban resilience. This paper identifies and reviews three traditions of literature on the idea of transitions and transformations, and assesses to what extent the transitions encompass elements of adaptive governance. This paper uses the open source Urban Transitions Project database to assess how urban experiments take into account principles of adaptive governance. The results show that: the experiments give no explicit information of ecological knowledge; the leadership of cities is primarily from local authorities; and evidence of partnerships and anticipatory or planned adaptation is limited or absent. The analysis shows that neither technological, political nor ecological solutions alone are sufficient to further our understanding of the analytical aspects of transition thinking in urban climate governance. In conclusion, the paper argues that the future research agenda for urban climate governance needs to explore further the links between the three traditions in order to better identify contradictions, complementarities or compatibilities, and what this means in practice for creating and assessing urban experiments.
Resumo:
This paper describes a novel on-line learning approach for radial basis function (RBF) neural network. Based on an RBF network with individually tunable nodes and a fixed small model size, the weight vector is adjusted using the multi-innovation recursive least square algorithm on-line. When the residual error of the RBF network becomes large despite of the weight adaptation, an insignificant node with little contribution to the overall system is replaced by a new node. Structural parameters of the new node are optimized by proposed fast algorithms in order to significantly improve the modeling performance. The proposed scheme describes a novel, flexible, and fast way for on-line system identification problems. Simulation results show that the proposed approach can significantly outperform existing ones for nonstationary systems in particular.
Resumo:
This paper proposes a novel adaptive multiple modelling algorithm for non-linear and non-stationary systems. This simple modelling paradigm comprises K candidate sub-models which are all linear. With data available in an online fashion, the performance of all candidate sub-models are monitored based on the most recent data window, and M best sub-models are selected from the K candidates. The weight coefficients of the selected sub-model are adapted via the recursive least square (RLS) algorithm, while the coefficients of the remaining sub-models are unchanged. These M model predictions are then optimally combined to produce the multi-model output. We propose to minimise the mean square error based on a recent data window, and apply the sum to one constraint to the combination parameters, leading to a closed-form solution, so that maximal computational efficiency can be achieved. In addition, at each time step, the model prediction is chosen from either the resultant multiple model or the best sub-model, whichever is the best. Simulation results are given in comparison with some typical alternatives, including the linear RLS algorithm and a number of online non-linear approaches, in terms of modelling performance and time consumption.
Resumo:
In this paper, we develop a novel constrained recursive least squares algorithm for adaptively combining a set of given multiple models. With data available in an online fashion, the linear combination coefficients of submodels are adapted via the proposed algorithm.We propose to minimize the mean square error with a forgetting factor, and apply the sum to one constraint to the combination parameters. Moreover an l1-norm constraint to the combination parameters is also applied with the aim to achieve sparsity of multiple models so that only a subset of models may be selected into the final model. Then a weighted l2-norm is applied as an approximation to the l1-norm term. As such at each time step, a closed solution of the model combination parameters is available. The contribution of this paper is to derive the proposed constrained recursive least squares algorithm that is computational efficient by exploiting matrix theory. The effectiveness of the approach has been demonstrated using both simulated and real time series examples.