198 resultados para Stochastic Approximation Algorithms
Resumo:
The understanding of the statistical properties and of the dynamics of multistable systems is gaining more and more importance in a vast variety of scientific fields. This is especially relevant for the investigation of the tipping points of complex systems. Sometimes, in order to understand the time series of given observables exhibiting bimodal distributions, simple one-dimensional Langevin models are fitted to reproduce the observed statistical properties, and used to investing-ate the projected dynamics of the observable. This is of great relevance for studying potential catastrophic changes in the properties of the underlying system or resonant behaviours like those related to stochastic resonance-like mechanisms. In this paper, we propose a framework for encasing this kind of studies, using simple box models of the oceanic circulation and choosing as observable the strength of the thermohaline circulation. We study the statistical properties of the transitions between the two modes of operation of the thermohaline circulation under symmetric boundary forcings and test their agreement with simplified one-dimensional phenomenological theories. We extend our analysis to include stochastic resonance-like amplification processes. We conclude that fitted one-dimensional Langevin models, when closely scrutinised, may result to be more ad-hoc than they seem, lacking robustness and/or well-posedness. They should be treated with care, more as an empiric descriptive tool than as methodology with predictive power.
Resumo:
The paper discusses ensemble behaviour in the Spiking Neuron Stochastic Diffusion Network, SNSDN, a novel network exploring biologically plausible information processing based on higher order temporal coding. SNSDN was proposed as an alternative solution to the binding problem [1]. SNSDN operation resembles Stochastic Diffusin on Search, SDS, a non-deterministic search algorithm able to rapidly locate the best instantiation of a target pattern within a noisy search space ([3], [5]). In SNSDN, relevant information is encoded in the length of interspike intervals. Although every neuron operates in its own time, ‘attention’ to a pattern in the search space results in self-synchronised activity of a large population of neurons. When multiple patterns are present in the search space, ‘switching of at- tention’ results in a change of the synchronous activity. The qualitative effect of attention on the synchronicity of spiking behaviour in both time and frequency domain will be discussed.
Resumo:
The Stochastic Diffusion Search algorithm -an integral part of Stochastic Search Networks is investigated. Stochastic Diffusion Search is an alternative solution for invariant pattern recognition and focus of attention. It has been shown that the algorithm can be modelled as an ergodic, finite state Markov Chain under some non-restrictive assumptions. Sub-linear time complexity for some settings of parameters has been formulated and proved. Some properties of the algorithm are then characterised and numerical examples illustrating some features of the algorithm are presented.
Resumo:
A direct method is presented for determining the uncertainty in reservoir pressure, flow, and net present value (NPV) using the time-dependent, one phase, two- or three-dimensional equations of flow through a porous medium. The uncertainty in the solution is modelled as a probability distribution function and is computed from given statistical data for input parameters such as permeability. The method generates an expansion for the mean of the pressure about a deterministic solution to the system equations using a perturbation to the mean of the input parameters. Hierarchical equations that define approximations to the mean solution at each point and to the field covariance of the pressure are developed and solved numerically. The procedure is then used to find the statistics of the flow and the risked value of the field, defined by the NPV, for a given development scenario. This method involves only one (albeit complicated) solution of the equations and contrasts with the more usual Monte-Carlo approach where many such solutions are required. The procedure is applied easily to other physical systems modelled by linear or nonlinear partial differential equations with uncertain data.
Resumo:
Some points of the paper by N.K. Nichols (see ibid., vol.AC-31, p.643-5, 1986), concerning the robust pole assignment of linear multiinput systems, are clarified. It is stressed that the minimization of the condition number of the closed-loop eigenvector matrix does not necessarily lead to robustness of the pole assignment. It is shown why the computational method, which Nichols claims is robust, is in fact numerically unstable with respect to the determination of the gain matrix. In replying, Nichols presents arguments to support the choice of the conditioning of the closed-loop poles as a measure of robustness and to show that the methods of J Kautsky, N. K. Nichols and P. VanDooren (1985) are stable in the sense that they produce accurate solutions to well-conditioned problems.
Resumo:
A number of computationally reliable direct methods for pole assignment by feedback have recently been developed. These direct procedures do not necessarily produce robust solutions to the problem, however, in the sense that the assigned poles are insensitive to perturbalions in the closed-loop system. This difficulty is illustrated here with results from a recent algorithm presented in this TRANSACTIONS and its causes are examined. A measure of robustness is described, and techniques for testing and improving robustness are indicated.
Resumo:
The solution of the pole assignment problem by feedback in singular systems is parameterized and conditions are given which guarantee the regularity and maximal degree of the closed loop pencil. A robustness measure is defined, and numerical procedures are described for selecting the free parameters in the feedback to give optimal robustness.
Resumo:
In this paper, we study the approximation of solutions of the homogeneous Helmholtz equation Δu + ω 2 u = 0 by linear combinations of plane waves with different directions. We combine approximation estimates for homogeneous Helmholtz solutions by generalized harmonic polynomials, obtained from Vekua’s theory, with estimates for the approximation of generalized harmonic polynomials by plane waves. The latter is the focus of this paper. We establish best approximation error estimates in Sobolev norms, which are explicit in terms of the degree of the generalized polynomial to be approximated, the domain size, and the number of plane waves used in the approximations.
Resumo:
We consider the approximation of solutions of the time-harmonic linear elastic wave equation by linear combinations of plane waves. We prove algebraic orders of convergence both with respect to the dimension of the approximating space and to the diameter of the domain. The error is measured in Sobolev norms and the constants in the estimates explicitly depend on the problem wavenumber. The obtained estimates can be used in the h- and p-convergence analysis of wave-based finite element schemes.
Resumo:
Certain algebraic combinations of single scattering albedo and solar radiation reflected from, or transmitted through, vegetation canopies do not vary with wavelength. These ‘‘spectrally invariant relationships’’ are the consequence of wavelength independence of the extinction coefficient and scattering phase function in veg- etation. In general, this wavelength independence does not hold in the atmosphere, but in cloud-dominated atmospheres the total extinction and total scattering phase function vary only weakly with wavelength. This paper identifies the atmospheric conditions under which the spectrally invariant approximation can accu- rately describe the extinction and scattering properties of cloudy atmospheres. The validity of the as- sumptions and the accuracy of the approximation are tested with 1D radiative transfer calculations using publicly available radiative transfer models: Discrete Ordinate Radiative Transfer (DISORT) and Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART). It is shown for cloudy atmospheres with cloud optical depth above 3, and for spectral intervals that exclude strong water vapor absorption, that the spectrally invariant relationships found in vegetation canopy radiative transfer are valid to better than 5%. The physics behind this phenomenon, its mathematical basis, and possible applications to remote sensing and climate are discussed.
Resumo:
In this paper we explore classification techniques for ill-posed problems. Two classes are linearly separable in some Hilbert space X if they can be separated by a hyperplane. We investigate stable separability, i.e. the case where we have a positive distance between two separating hyperplanes. When the data in the space Y is generated by a compact operator A applied to the system states ∈ X, we will show that in general we do not obtain stable separability in Y even if the problem in X is stably separable. In particular, we show this for the case where a nonlinear classification is generated from a non-convergent family of linear classes in X. We apply our results to the problem of quality control of fuel cells where we classify fuel cells according to their efficiency. We can potentially classify a fuel cell using either some external measured magnetic field or some internal current. However we cannot measure the current directly since we cannot access the fuel cell in operation. The first possibility is to apply discrimination techniques directly to the measured magnetic fields. The second approach first reconstructs currents and then carries out the classification on the current distributions. We show that both approaches need regularization and that the regularized classifications are not equivalent in general. Finally, we investigate a widely used linear classification algorithm Fisher's linear discriminant with respect to its ill-posedness when applied to data generated via a compact integral operator. We show that the method cannot stay stable when the number of measurement points becomes large.
Resumo:
The assumed relationship between ice particle mass and size is profoundly important in radar retrievals of ice clouds, but, for millimeter-wave radars, shape and preferred orientation are important as well. In this paper the authors first examine the consequences of the fact that the widely used ‘‘Brown and Francis’’ mass–size relationship has often been applied to maximumparticle dimension observed by aircraftDmax rather than to the mean of the particle dimensions in two orthogonal directions Dmean, which was originally used by Brown and Francis. Analysis of particle images reveals that Dmax ’ 1.25Dmean, and therefore, for clouds for which this mass–size relationship holds, the consequences are overestimates of ice water content by around 53% and of Rayleigh-scattering radar reflectivity factor by 3.7 dB. Simultaneous radar and aircraft measurements demonstrate that much better agreement in reflectivity factor is provided by using this mass–size relationship with Dmean. The authors then examine the importance of particle shape and fall orientation for millimeter-wave radars. Simultaneous radar measurements and aircraft calculations of differential reflectivity and dual-wavelength ratio are presented to demonstrate that ice particles may usually be treated as horizontally aligned oblate spheroids with an axial ratio of 0.6, consistent with them being aggregates. An accurate formula is presented for the backscatter cross section apparent to a vertically pointing millimeter-wave radar on the basis of a modified version of Rayleigh–Gans theory. It is then shown that the consequence of treating ice particles as Mie-scattering spheres is to substantially underestimate millimeter-wave reflectivity factor when millimeter-sized particles are present, which can lead to retrieved ice water content being overestimated by a factor of 4.h