212 resultados para Middle Holocene
Resumo:
In this review paper, the aim is to compare and contrast fossil pollen evidence for Holocene rainforest ecotonal dynamics at opposite ends of the Amazon basin – the southern ecotone in NE lowland Bolivia versus the northern ecotone in lowland Colombia. During the Holocene, tropical South America experienced major changes in precipitation (Silva Dias et al. 2009). Consideration of Amazonian rainforest dynamics over this time-frame may therefore provide important insights into rainforest responsiveness to climate change.
Resumo:
This paper uses a palaeoecological approach to examine the impact of drier climatic conditions of the Early-Mid-Holocene (ca 8000-4000 years ago) upon Amazonia's forests and their fire regimes. Palaeovegetation (pollen data) and palaeofire (charcoal) records are synthesized from 20 sites within the present tropical forest biome, and the underlying causes of any emergent patterns or changes are explored by reference to independent palaeoclimate data and present-day patterns of precipitation, forest cover and fire activity across Amazonia. During the Early-Mid-Holocene, Andean cloud forest taxa were replaced by lowland tree taxa as the cloud base rose while lowland ecotonal areas, which are presently covered by evergreen rainforest, were instead dominated by savannahs and/or semi-deciduous dry forests. Elsewhere in the Amazon Basin there is considerable spatial and temporal variation in patterns of vegetation disturbance and fire, which probably reflects the complex heterogeneous patterns in precipitation and seasonality across the basin, and the interactions between climate change, drought- and fire susceptibility of the forests, and Palaeo-Indian land use. Our analysis shows that the forest biome in most parts of Amazonia appears to have been remarkably resilient to climatic conditions significantly drier than those of today, despite widespread evidence of forest burning. Only in ecotonal areas is there evidence of biome replacement in the Holocene. From this palaeoecological perspective, we argue against the Amazon forest 'dieback' scenario simulated for the future.
Resumo:
The effect of spatial and temporal variations in the radiative damping rate on the response to an imposed forcing or diabatic heating is examined in a zonal-mean model of the middle atmosphere. Attention is restricted to the extratropics, where a linear approach is viable. It is found that regions with weak radiative damping rates are more sensitive in terms of temperature to the remote influence of the diabatic circulation. The delay in the response in such regions can mean that ‘downward’ control is not achieved on seasonal time-scales. A seasonal variation in the radiative damping rate modulates the evolution of the response and leaves a transient-like signature in the annual mean temperature field. Several idealized examples are considered, motivated by topical questions. It is found that wave drag outside the polar vortex can significantly affect the temperatures in its interior, so that high-latitude, high-altitude gravity-wave drag is not the only mechanism for warming the southern hemisphere polar vortex. Diabatic mass transport through the 100 hPa surface is found to lag the seasonal evolution of the wave drag that drives the transport, and thus cannot be considered to be in the downward control regime. On the other hand, the seasonal variation of the radiative damping rate is found to make only a weak contribution to the annual mean temperature increase that has been observed above the ozone hole. Copyright © 2002 Royal Meteorological Society.
Resumo:
This paper explores how the drastic landscape changes that took place in the North Sea basin during the Holocene affected the lives of those dwelling in that area. Previous contributions to the discussion of the Holocene inundation of the North Sea have tended to concentrate on the timings. This paper discusses the ways people could have perceived and responded to these events, emphasizing that climate change should not be viewed apart from social factors. It is also argued that sea-level rise was not something externally imposed on communities but an integral part of their world.
Resumo:
Considerable debate surrounds the source of the apparently ‘anomalous’1 increase of atmospheric methane concentrations since the mid-Holocene (5,000 years ago) compared to previous interglacial periods as recorded in polar ice core records2. Proposed mechanisms for the rise in methane concentrations relate either to methane emissions from anthropogenic early rice cultivation1, 3 or an increase in natural wetland emissions from tropical4 or boreal sources5, 6. Here we show that our climate and wetland simulations of the global methane cycle over the last glacial cycle (the past 130,000 years) recreate the ice core record and capture the late Holocene increase in methane concentrations. Our analyses indicate that the late Holocene increase results from natural changes in the Earth's orbital configuration, with enhanced emissions in the Southern Hemisphere tropics linked to precession-induced modification of seasonal precipitation. Critically, our simulations capture the declining trend in methane concentrations at the end of the last interglacial period (115,000–130,000 years ago) that was used to diagnose the Holocene methane rise as unique. The difference between the two time periods results from differences in the size and rate of regional insolation changes and the lack of glacial inception in the Holocene. Our findings also suggest that no early agricultural sources are required to account for the increase in methane concentrations in the 5,000 years before the industrial era.
Resumo:
We examine mid- to late Holocene centennial-scale climate variability in Ireland using proxy data from peatlands, lakes and a speleothem. A high degree of between-record variability is apparent in the proxy data and significant chronological uncertainties are present. However, tephra layers provide a robust tool for correlation and improve the chronological precision of the records. Although we can find no statistically significant coherence in the dataset as a whole, a selection of high-quality peatland water table reconstructions co-vary more than would be expected by chance alone. A locally weighted regression model with bootstrapping can be used to construct a ‘best-estimate’ palaeoclimatic reconstruction from these datasets. Visual comparison and cross-wavelet analysis of peatland water table compilations from Ireland and Northern Britain show that there are some periods of coherence between these records. Some terrestrial palaeoclimatic changes in Ireland appear to coincide with changes in the North Atlantic thermohaline circulation and solar activity. However, these relationships are inconsistent and may be obscured by chronological uncertainties. We conclude by suggesting an agenda for future Holocene climate research in Ireland.
Resumo:
The response of monsoon circulation in the northern and southern hemisphere to 6 ka orbital forcing has been examined in 17 atmospheric general circulation models and 11 coupled ocean–atmosphere general circulation models. The atmospheric response to increased summer insolation at 6 ka in the northern subtropics strengthens the northern-hemisphere summer monsoons and leads to increased monsoonal precipitation in western North America, northern Africa and China; ocean feedbacks amplify this response and lead to further increase in monsoon precipitation in these three regions. The atmospheric response to reduced summer insolation at 6 ka in the southern subtropics weakens the southern-hemisphere summer monsoons and leads to decreased monsoonal precipitation in northern South America, southern Africa and northern Australia; ocean feedbacks weaken this response so that the decrease in rainfall is smaller than might otherwise be expected. The role of the ocean in monsoonal circulation in other regions is more complex. There is no discernable impact of orbital forcing in the monsoon region of North America in the atmosphere-only simulations but a strong increase in precipitation in the ocean–atmosphere simulations. In contrast, there is a strong atmospheric response to orbital forcing over northern India but ocean feedback reduces the strength of the change in the monsoon although it still remains stronger than today. Although there are differences in magnitude and exact location of regional precipitation changes from model to model, the same basic mechanisms are involved in the oceanic modulation of the response to orbital forcing and this gives rise to a robust ensemble response for each of the monsoon systems. Comparison of simulated and reconstructed changes in regional climate suggest that the coupled ocean–atmosphere simulations produce more realistic changes in the northern-hemisphere monsoons than atmosphere-only simulations, though they underestimate the observed changes in precipitation in all regions. Evaluation of the southern-hemisphere monsoons is limited by lack of quantitative reconstructions, but suggest that model skill in simulating these monsoons is limited.
Resumo:
Background: To inform early intervention practice, the present research examines how child anxiety, behavioural inhibition, maternal overinvolvement, maternal negativity, mother-child attachment and maternal anxiety, as assessed at age four, predict anxiety at age nine. Method: 202 children (102 behaviourally inhibited and 100 behaviourally uninhibited) aged 3–4 years were initially recruited and the predictors outlined above were assessed. Diagnostic assessments, using the Anxiety Disorders Interview Schedule, were then conducted five years later. Results: Behavioural inhibition, maternal anxiety, and maternal overinvolvement were significant predictors of clinical anxiety, even after controlling for baseline anxiety (p,.05). No significant effect of negativity or attachment security was found over and above baseline anxiety (p..1). Conclusions: Preschool children who show anxiety, are inhibited, have overinvolved mothers and mothers with anxiety disorders are at increased risk for anxiety in middle childhood. These factors can be used to identify suitable participants for early intervention and can be targeted within intervention programs.
Resumo:
Diagnosing the climate of New Zealand from low-resolution General Circulation Models (GCMs) is notoriously difficult due to the interaction of the complex topography and the Southern Hemisphere (SH) mid-latitude westerly winds. Therefore, methods of downscaling synoptic scale model data for New Zealand are useful to help understand past climate. New Zealand also has a wealth of palaeoclimate-proxy data to which the downscaled model output can be compared, and to provide a qualitative method of assessing the capability of GCMs to represent, in this case, the climate 6000 yr ago in the Mid-Holocene. In this paper, a synoptic weather and climate regime classification system using Empirical Orthogonal Function (EOF) analysis of GCM and reanalysis data was used. The climate regimes are associated with surface air temperature and precipitation anomalies over New Zealand. From the analysis in this study, we find at 6000 BP that increased trough activity in summer and autumn led to increased precipitation, with an increased north-south pressure gradient ("zonal events") in winter and spring leading to drier conditions. Opposing effects of increased (decreased) temperature are also seen in spring (autumn) in the South Island, which are associated with the increased zonal (trough) events; however, the circulation induced changes in temperature are likely to have been of secondary importance to the insolation induced changes. Evidence from the palaeoclimate-proxy data suggests that the Mid-Holocene was characterized by increased westerly wind events in New Zealand, which agrees with the preference for trough and zonal regimes in the models.
Resumo:
The Kalahari region has become a major source of Quaternary palaeoenvironmental data derived primarily from the analysis of geomorphological proxies of environmental change. One suite of data, from palaeolacustrine landforms, has recently provided a new record of major hydrological changes in the last 150 ka [Burrough, S. L., Thomas, D. S. G., Bailey, R. M., 2009. Mega-Lake in the Kalahari: A Late Pleistocene record of the Palaeolake Makgadikgadi system. Quaternary Science Reviews, in press.]. Here we present an improved analysis of the drivers and feedbacks of lake level change, utilising information from three main sources: data from the lake system itself, from analyses of other late Quaternary records within the region and from climate modelling. Simulations using the Hadley Centre coupled climate model, HadCM3, suggest that once triggered, the lake body was large enough to potentially affect both local and regional climates. Surface waters and their interactions with the climate are therefore an important component of environmental dynamics during the late Quaternary. Through its capacity to couple Middle Kalahari environments to distant forcing mechanisms and to itself force environmental change, we demonstrate that the existence or absence of megalake Makgadikgadi adds a new level of complexity to the interpretations of environmental proxy records in southern Africa's summer rainfall zone.
Resumo:
Initial results are presented from a middle atmosphere extension to a version of the European Centre For Medium Range Weather Forecasting tropospheric model. The extended version of the model has been developed as part of the UK Universities Global Atmospheric Modelling Project and extends from the ground to approximately 90 km. A comprehensive solar radiation scheme is included which uses monthly averaged climatological ozone values. A linearised infrared cooling scheme is employed. The basic climatology of the model is described; the parametrization of drag due to orographically forced gravity waves is shown to have a dramatic effect on the simulations of the winter hemisphere.
Resumo:
Past climates provide a test of models’ ability to predict climate change. We present a comprehensive evaluation of state-of-the-art models against Last Glacial Maximum and mid-Holocene climates, using reconstructions of land and ocean climates and simulations from the Palaeoclimate Modelling and Coupled Modelling Intercomparison Projects. Newer models do not perform better than earlier versions despite higher resolution and complexity. Differences in climate sensitivity only weakly account for differences in model performance. In the glacial, models consistently underestimate land cooling (especially in winter) and overestimate ocean surface cooling (especially in the tropics). In the mid-Holocene, models generally underestimate the precipitation increase in the northern monsoon regions, and overestimate summer warming in central Eurasia. Models generally capture large-scale gradients of climate change but have more limited ability to reproduce spatial patterns. Despite these common biases, some models perform better than others.