221 resultados para Linear filters


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of tracking line segments corresponding to on-line handwritten obtained through a digitizer tablet. The approach is based on Kalman filtering to model linear portions of on-line handwritten, particularly, handwritten numerals, and to detect abrupt changes in handwritten direction underlying a model change. This approach uses a Kalman filter framework constrained by a normalized line equation, where quadratic terms are linearized through a first-order Taylor expansion. The modeling is then carried out under the assumption that the state is deterministic and time-invariant, while the detection relies on double thresholding mechanism which tests for a violation of this assumption. The first threshold is based on an approach of layout kinetics. The second one takes into account the jump in angle between the past observed direction of layout and its current direction. The method proposed enables real-time processing. To illustrate the methodology proposed, some results obtained from handwritten numerals are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the integral manifold approach, a composite control—the sum of a fast control and a slow control—is derived for a particular class of non-linear singularly perturbed systems. The fast control is designed completely at the outset, thus ensuring the stability of the fast transients of the system and, furthermore, the existence of the integral manifold. A new method is then presented which simplifies the derivation of a slow control such that the singularly perturbed system meets a preselected design objective to within some specified order of accuracy. Though this approach is, by its very nature, ad hoc, the underlying procedure is easily extended to more general classes of singularly perturbed systems by way of three examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The power of an adaptive equalizer is maximized when the structural parameters including the tap-length and decision delay can be optimally chosen. Although the method for adjusting either the tap-length or decision delay has been proposed, adjusting both simultaneously becomes much more involved as they interact with each other. In this paper, this problem is solved by putting a linear prewhitener before the equalizer, with which the equivalent channel becomes maximum-phase. This implies that the optimum decision delay can be simply ¯xed at the tap-length minus one, while the tap-length can then be chosen using a similar approach as that proposed in our previous work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A technique is derived for solving a non-linear optimal control problem by iterating on a sequence of simplified problems in linear quadratic form. The technique is designed to achieve the correct solution of the original non-linear optimal control problem in spite of these simplifications. A mixed approach with a discrete performance index and continuous state variable system description is used as the basis of the design, and it is shown how the global problem can be decomposed into local sub-system problems and a co-ordinator within a hierarchical framework. An analysis of the optimality and convergence properties of the algorithm is presented and the effectiveness of the technique is demonstrated using a simulation example with a non-separable performance index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nonlinear regression structure comprising a wavelet network and a linear term is proposed for system identification. The theoretical foundation of the approach is laid by proving that radial wavelets are orthogonal to linear functions. A constructive procedure for building such models is described and the approach is tested with experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper shows that a wavelet network and a linear term can be advantageously combined for the purpose of non linear system identification. The theoretical foundation of this approach is laid by proving that radial wavelets are orthogonal to linear functions. A constructive procedure for building such nonlinear regression structures, termed linear-wavelet models, is described. For illustration, sim ulation data are used to identify a model for a two-link robotic manipulator. The results show that the introduction of wavelets does improve the prediction ability of a linear model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model structure comprising a wavelet network and a linear term is proposed for nonlinear system identification. It is shown that under certain conditions wavelets are orthogonal to linear functions and, as a result, the two parts of the model can be identified separately. The linear-wavelet model is compared to a standard wavelet network using data from a simulated fermentation process. The results show that the linear-wavelet model yields a smaller modelling error when compared to a wavelet network using the same number of regressors.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the use of molecular combing as an alignment method to obtain macroscopically oriented amyloid fibrils on planar surfaces. The aligned fibrils are studied by polarized infrared spectroscopy. This gives structural information that cannot be definitively obtained from standard infrared experiments on isotropic samples, for example, confirmation of the characteristic cross-beta amyloid core structure, the side-chain orientation from specific amino acids, and the arrangement of the strands within the fibrils, as we demonstrate here. We employed amyloid fibrils from hen egg white lysozyme (HEWL) and from a model octapeptide. Our results demonstrate molecular combing as a straightforward method to align amyloid fibrils, producing highly anisotropic infrared linear dichroism (IRLD) spectra.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New ways of combining observations with numerical models are discussed in which the size of the state space can be very large, and the model can be highly nonlinear. Also the observations of the system can be related to the model variables in highly nonlinear ways, making this data-assimilation (or inverse) problem highly nonlinear. First we discuss the connection between data assimilation and inverse problems, including regularization. We explore the choice of proposal density in a Particle Filter and show how the ’curse of dimensionality’ might be beaten. In the standard Particle Filter ensembles of model runs are propagated forward in time until observations are encountered, rendering it a pure Monte-Carlo method. In large-dimensional systems this is very inefficient and very large numbers of model runs are needed to solve the data-assimilation problem realistically. In our approach we steer all model runs towards the observations resulting in a much more efficient method. By further ’ensuring almost equal weight’ we avoid performing model runs that are useless in the end. Results are shown for the 40 and 1000 dimensional Lorenz 1995 model.