227 resultados para Ice -- Manufacture
Resumo:
We develop the essential ingredients of a new, continuum and anisotropic model of sea-ice dynamics designed for eventual use in climate simulation. These ingredients are a constitutive law for sea-ice stress, relating stress to the material properties of sea ice and to internal variables describing the sea-ice state, and equations describing the evolution of these variables. The sea-ice cover is treated as a densely flawed two-dimensional continuum consisting of a uniform field of thick ice that is uniformly permeated with narrow linear regions of thinner ice called leads. Lead orientation, thickness and width distributions are described by second-rank tensor internal variables: the structure, thickness and width tensors, whose dynamics are governed by corresponding evolution equations accounting for processes such as new lead generation and rotation as the ice cover deforms. These evolution equations contain contractions of higher-order tensor expressions that require closures. We develop a sea-ice stress constitutive law that relates sea-ice stress to the structure tensor, thickness tensor and strain rate. For the special case of empty leads (containing no ice), linear closures are adopted and we present calculations for simple shear, convergence and divergence.
Resumo:
The mixing of floes of different thickness caused by repeated deformation of the ice cover is modeled as diffusion, and the mass balance equation for sea ice accounting for mass diffusion is developed. The effect of deformational diffusion on the ice thickness balance is shown to reach 1% of the divergence effect, which describes ridging and lead formation. This means that with the same accuracy the mass balance equation can be written in terms of mean velocity rather than mean mass-weighted velocity, which one should correctly use for a multicomponent fluid such as sea ice with components identified by floe thickness. Mixing (diffusion) of sea ice also occurs because of turbulent variations in wind and ocean drags that are unresolved in models. Estimates of the importance of turbulent mass diffusion on the dynamic redistribution of ice thickness are determined using empirical data for the turbulent diffusivity. For long-time-scale prediction (≫5 days), where unresolved atmospheric motion may have a length scale on the order of the Arctic basin and the time scale is larger than the synoptic time scale of atmospheric events, turbulent mass diffusion can exceed 10% of the divergence effect. However, for short-time-scale prediction, for example, 5 days, the unresolved scales are on the order of 100 km, and turbulent diffusion is about 0.1% of the divergence effect. Because inertial effects are small in the dynamics of the sea ice pack, diffusive momentum transfer can be disregarded.
Resumo:
The heat and mass balance of the Arctic Ocean is very sensitive to the growth and decay of sea ice and the interaction between the heat and salt fields in the oceanic boundary layer. The hydraulic roughness of sea ice controls the detailed nature of turbulent fluxes in the boundary layer and hence is an important ingredient in model parameterizations. We describe a novel mechanism for the generation of corrugations of the sea ice–ocean interface, present a mathematical analysis elucidating the mechanism, and present numerical calculations for geophysically relevant conditions. The mechanism relies on brine flows developing in the sea ice due to Bernoulli suction by flow of ocean past the interface. For oceanic shears at the ice interface of 0.2 s−1, we expect the corrugations to form with a wavelength dependent upon the permeability structure of the sea ice which is described herein. The mechanism should be particularly important during sea ice formation in wind-maintained coastal polynyas and in leads. This paper applies our earlier analyses of the fundamental instability to field conditions and extends it to take account of the anisotropic and heterogeneous permeability of sea ice.
Resumo:
A drag law accounting for Ekman rotation adjacent to a flat, horizontal bou ndary is proposed for use in a plume model that is written in terms of the depth-mean velocity. The drag l aw contains a variable turning angle between the mean velocity and the drag imposed by the turbulent bound ary layer. The effect of the variable turning angle in the drag law is studied for a plume of ice shelf wat er (ISW) ascending and turning beneath an Antarctic ice shelf with draft decreasing away from the groundi ng line. As the ISW plume ascends the sloping ice shelf–ocean boundary, it can melt the ice shelf, wh ich alters the buoyancy forcing driving the plume motion. Under these conditions, the typical turning ang le is of order 10° over most of the plume area for a range of drag coefficients (the minus sign arises for th e Southern Hemisphere). The rotation of the drag with respect to the mean velocity is found to be signifi cant if the drag coefficient exceeds 0.003; in this case the plume body propagates farther along and across the b ase of the ice shelf than a plume with the standard quadratic drag law with no turning angle.
Resumo:
In winter, brine rejection from sea ice formation and export in the Weddell Sea, offshore of Filchner-Ronne Ice Shelf (FRIS), leads to the formation of High Salinity Shelf Water (HSSW). This dense water mass enters the cavity beneath FRIS by sinking southward down the sloping continental shelf towards the grounding line. Melting occurs when the HSSW encounters the ice shelf, and the meltwater released cools and freshens the HSSW to form a water mass known as Ice Shelf Water (ISW). If this ISW rises, the ‘ice pump’ is initiated (Lewis and Perkin, 1986), whereby the ascending ISW becomes supercooled and deposits marine ice at shallower locations due to the pressure increase in the in-situ freezing temperature. Sandh¨ager et al. (2004) were able to infer the thickness patterns of marine ice deposits at the base of FRIS (figure 1), so the primary aim of this work is to try to understand the ocean flows that determine these patterns. The plume model we use to investigate ISW flow is described fully by Holland and Feltham (accepted) so only a relatively brief outline is presented here. The plume is simulated by combining a parameterisation of ice shelf basal interaction and a multiplesize- class frazil dynamics model with an unsteady, depth-averaged reduced-gravity plume model. In the model an active region of ISW evolves above and within an expanse of stagnant ambient fluid, which is considered to be ice-free and has fixed profiles of temperature and salinity. The two main assumptions of the model are that there is a well-mixed layer underneath the ice shelf and that the ambient fluid outside the plume is stagnant with fixed properties. The topography of the ice shelf that the plume flows beneath is set to the FRIS ice shelf draft calculated by Sandh¨ager et al. (2004) masked with the grounding line from the Antarctic Digital Database (ADD Consortium, 2002). To initiate the plumes, we assume that the intrusion of dense HSSW initially causes melting at the points on the grounding line where the glaciological tributaries feeding FRIS go afloat.
Resumo:
Abstract Preliminary results are presented from a modelling study directed at the spatial variation of frazil ice formation and its effects on flow underneath large ice shelves. The chosen plume and frazil models are briefly introduced, and results from two simplified cases are outlined. It is found that growth and melting dominate the frazil model in the short term. Secondary nucleation converts larger crystals into several nuclei due to crystal collisions (microattrition) and fluid shear and therefore governs the ice crystal dynamics after the initial supercooling has been quenched. Frazil formation is found to have a significant depth-dependence in an idealised study of an Ice Shelf Water plume. Finally, plans for more extensive and realistic studies are discussed.
Resumo:
We present a methodology that allows a sea ice rheology, suitable for use in a General Circulation Model (GCM), to be determined from laboratory and tank experiments on sea ice when combined with a kinematic model of deformation. The laboratory experiments determine a material rheology for sea ice, and would investigate a nonlinear friction law of the form τ ∝ σ n⅔, instead of the more familiar Amonton's law, τ = μσn (τ is the shear stress, μ is the coefficient of friction and σ n is the normal stress). The modelling approach considers a representative region R containing ice floes (or floe aggregates), separated by flaws. The deformation of R is imposed and the motion of the floes determined using a kinematic model, which will be motivated from SAR observations. Deformation of the flaws is inferred from the floe motion and stress determined from the material rheology. The stress over R is then determined from the area-weighted contribution from flaws and floes
Resumo:
We examine the recovery of Arctic sea ice from prescribed ice-free summer conditions in simulations of 21st century climate in an atmosphere–ocean general circulation model. We find that ice extent recovers typically within two years. The excess oceanic heat that had built up during the ice-free summer is rapidly returned to the atmosphere during the following autumn and winter, and then leaves the Arctic partly through increased longwave emission at the top of the atmosphere and partly through reduced atmospheric heat advection from lower latitudes. Oceanic heat transport does not contribute significantly to the loss of the excess heat. Our results suggest that anomalous loss of Arctic sea ice during a single summer is reversible, as the ice–albedo feedback is alleviated by large-scale recovery mechanisms. Hence, hysteretic threshold behavior (or a “tipping point”) is unlikely to occur during the decline of Arctic summer sea-ice cover in the 21st century.
Resumo:
We investigate the initialization of Northern-hemisphere sea ice in the global climate model ECHAM5/MPI-OM by assimilating sea-ice concentration data. The analysis updates for concentration are given by Newtonian relaxation, and we discuss different ways of specifying the analysis updates for mean thickness. Because the conservation of mean ice thickness or actual ice thickness in the analysis updates leads to poor assimilation performance, we introduce a proportional dependence between concentration and mean thickness analysis updates. Assimilation with these proportional mean-thickness analysis updates significantly reduces assimilation error both in identical-twin experiments and when assimilating sea-ice observations, reducing the concentration error by a factor of four to six, and the thickness error by a factor of two. To understand the physical aspects of assimilation errors, we construct a simple prognostic model of the sea-ice thermodynamics, and analyse its response to the assimilation. We find that the strong dependence of thermodynamic ice growth on ice concentration necessitates an adjustment of mean ice thickness in the analysis update. To understand the statistical aspects of assimilation errors, we study the model background error covariance between ice concentration and ice thickness. We find that the spatial structure of covariances is best represented by the proportional mean-thickness analysis updates. Both physical and statistical evidence supports the experimental finding that proportional mean-thickness updates are superior to the other two methods considered and enable us to assimilate sea ice in a global climate model using simple Newtonian relaxation.
Resumo:
We investigate the initialisation of Northern Hemisphere sea ice in the global climate model ECHAM5/MPI-OM by assimilating sea-ice concentration data. The analysis updates for concentration are given by Newtonian relaxation, and we discuss different ways of specifying the analysis updates for mean thickness. Because the conservation of mean ice thickness or actual ice thickness in the analysis updates leads to poor assimilation performance, we introduce a proportional dependence between concentration and mean thickness analysis updates. Assimilation with these proportional mean-thickness analysis updates leads to good assimilation performance for sea-ice concentration and thickness, both in identical-twin experiments and when assimilating sea-ice observations. The simulation of other Arctic surface fields in the coupled model is, however, not significantly improved by the assimilation. To understand the physical aspects of assimilation errors, we construct a simple prognostic model of the sea-ice thermodynamics, and analyse its response to the assimilation. We find that an adjustment of mean ice thickness in the analysis update is essential to arrive at plausible state estimates. To understand the statistical aspects of assimilation errors, we study the model background error covariance between ice concentration and ice thickness. We find that the spatial structure of covariances is best represented by the proportional mean-thickness analysis updates. Both physical and statistical evidence supports the experimental finding that assimilation with proportional mean-thickness updates outperforms the other two methods considered. The method described here is very simple to implement, and gives results that are sufficiently good to be used for initialising sea ice in a global climate model for seasonal to decadal predictions.