169 resultados para Greenhouse plants.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exceptionally broad species diversity of vascular plant genera in east Asian temperate forests, compared with their sister taxa in North America, has been attributed to the greater climatic diversity of east Asia, combined with opportunities for allopatric speciation afforded by repeated fragmentation and coalescence of populations through Late Cenozoic ice-age cycles1. According to Qian and Ricklefs1, these opportunities occurred in east Asia because temperate forests extended across the continental shelf to link populations in China, Korea and Japan during glacial periods, whereas higher sea levels during interglacial periods isolated these regions and warmer temperatures restricted temperate taxa to disjunct refuges. However, palaeovegetation data from east Asia2, 3, 4, 5, 6 show that temperate forests were considerably less extensive than today during the Last Glacial Maximum, calling into question the coalescence of tree populations required by the hypothesis of Qian and Ricklefs1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A surface- and vertical subsurface-flow-constructed wetland were designed to study the response of chlorophyll and antioxidant enzymes to elevated UV radiation in three types of wetland plants (Canna indica, Phragmites austrail, and Typha augustifolia). Results showed that (1) chlorophyll content of C. indica, P. austrail, and T. augustifolia in the constructed wetland was significantly lower where UV radiation was increased by 10 and 20 % above ambient solar level than in treatment with ambient solar UV radiation (p < 0.05). (2) The malondialdehyde (MDA) content, guaiacol peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities of wetland plants increased with elevated UV radiation intensity. (3) The increased rate of MDA, SOD, POD, and CAT activities of C. indica, P. australis, and T. angustifolia by elevated UV radiation of 10 % was higher in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland. The sensitivity of MDA, SOD, POD, and CAT activities of C. indica, P. austrail, and T. augustifolia to the elevated UV radiation was lower in surface-flow-constructed wetland than in the vertical subsurface-flow-constructed wetland, which was related to a reduction in UV radiation intensity through the dissolved organic carbon and suspended matter in the water. C. indica had the highest SOD and POD activities, which implied it is more sensitive to enhanced UV radiation. Therefore, different wetland plants had different antioxidant enzymes by elevated UV radiation, which were more sensitive in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Claviceps purpurea is a biotrophic fungal pathogen of grasses causing the ergot disease. The infection process of C. purpurea on rye flowers is accompanied by pectin degradation and polygalacturonase (PG) activity represents a pathogenicity factor. Wheat is also infected by C. purpurea and we tested whether the presence of polygalacturonase inhibiting protein (PGIP) can affect pathogen infection and ergot disease development. Wheat transgenic plants expressing the bean PvPGIP2 did not show a clear reduction of disease symptoms when infected with C. purpurea. To ascertain the possible cause underlying this lack of improved resistance of PvPGIP2 plants, we expressed both polygalacturonases present in the C. purpurea genome, cppg1 and cppg2 in Pichia pastoris. In vitro assays using the heterologous expressed PGs and PvPGIP2 showed that neither PG is inhibited by this inhibitor. To further investigate the role of PG in the C. purpurea/wheat system, we demonstrated that the activity of both PGs of C. purpurea is reduced on highly methyl esterified pectin. Finally, we showed that this reduction in PG activity is relevant in planta, by inoculating with C. purpurea transgenic wheat plants overexpressing a pectin methyl esterase inhibitor (PMEI) and showing a high degree of pectin methyl esterification. We observed reduced disease symptoms in the transgenic line compared with null controls. Together, these results highlight the importance of pectin degradation for ergot disease development in wheat and sustain the notion that inhibition of pectin degradation may represent a possible route to control of ergot in cereals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The environmental impacts of genetically modified crops is still a controversial issue in Europe. The overall risk assessment framework has recently been reinforced by the European Food Safety Authority(EFSA) and its implementation requires harmonized and efficient methodologies. The EU-funded research project AMIGA − Assessing and monitoring Impacts of Genetically modified plants on Agro-ecosystems − aims to address this issue, by providing a framework that establishes protection goals and baselines for European agro-ecosystems, improves knowledge on the potential long term environmental effects of genetically modified (GM) plants, tests the efficacy of the EFSA Guidance Document for the Environmental Risk Assessment, explores new strategies for post market monitoring, and provides a systematic analysis of economic aspects of Genetically Modified crops cultivation in the EU. Research focuses on ecological studies in different EU regions, the sustainability of GM crops is estimated by analysing the functional components of the agro-ecosystems and specific experimental protocols are being developed for this scope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pollinator declines have raised concerns about the persistence of plant species that depend on insect pollination, in particular by bees, for their reproduction. The impact of pollinator declines remains unknown for species-rich plant communities found in temperate seminatural grasslands. We investigated effects of land-use intensity in the surrounding landscape on the distribution of plant traits related to insect pollination in 239 European seminatural grasslands. Increasing arable land use in the surrounding landscape consistently reduced the density of plants depending on bee and insect pollination. Similarly, the relative abundance of bee-pollination-dependent plants increased with higher proportions of non-arable agricultural land (e.g. permanent grassland). This was paralleled by an overall increase in bee abundance and diversity. By isolating the impact of the surrounding landscape from effects of local habitat quality, we show for the first time that grassland plants dependent on insect pollination are particularly susceptible to increasing land-use intensity in the landscape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around ‘climate response functions’ (CRFs), i.e. the response of the climate to ‘step’ changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an accelerating rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing concentrations of greenhouse gases in the atmosphere are expected to modify the global water cycle with significant consequences for terrestrial hydrology. We assess the impact of climate change on hydrological droughts in a multimodel experiment including seven global impact models (GIMs) driven by bias-corrected climate from five global climate models under four representative concentration pathways (RCPs). Drought severity is defined as the fraction of land under drought conditions. Results show a likely increase in the global severity of hydrological drought at the end of the 21st century, with systematically greater increases for RCPs describing stronger radiative forcings. Under RCP8.5, droughts exceeding 40% of analyzed land area are projected by nearly half of the simulations. This increase in drought severity has a strong signal-to-noise ratio at the global scale, and Southern Europe, the Middle East, the Southeast United States, Chile, and South West Australia are identified as possible hotspots for future water security issues. The uncertainty due to GIMs is greater than that from global climate models, particularly if including a GIM that accounts for the dynamic response of plants to CO2 and climate, as this model simulates little or no increase in drought frequency. Our study demonstrates that different representations of terrestrial water-cycle processes in GIMs are responsible for a much larger uncertainty in the response of hydrological drought to climate change than previously thought. When assessing the impact of climate change on hydrology, it is therefore critical to consider a diverse range of GIMs to better capture the uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large volcanic eruption might constitute a climate emergency, significantly altering global temperature and precipitation for several years. Major future eruptions will occur, but their size or timing cannot be predicted. We show, for the first time, that it may be possible to counteract these climate effects through deliberate emissions of short-lived greenhouse gases, dampening the abrupt impact of an eruption. We estimate an emission pathway countering a hypothetical eruption 3 times the size of Mount Pinatubo in 1991. We use a global climate model to evaluate global and regional responses to the eruption, with and without counteremissions. We then raise practical, financial, and ethical questions related to such a strategy. Unlike the more commonly discussed geoengineering to mitigate warming from long-lived greenhouse gases, designed emissions to counter temporary cooling would not have the disadvantage of needing to be sustained over long periods. Nevertheless, implementation would still face significant challenges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many species have the ability to resprout vegetatively after a substantial loss of biomass induced by environmental stress, including drought. Many of the regions characterised by ecosystems where resprouting is common are projected to experience more frequent and intense drought during the 21st Century. However, in assessments of ecosystem response to drought disturbance there has been scant consideration of the resilience and post-drought recovery of resprouting species. Systematic differences in hydraulic and allocation traits suggest that resprouting species are more resilient to drought-stress than nonresprouting species. Evidence suggests that ecosystems dominated by resprouters recover from disturbance more quickly than ecosystems dominated by nonresprouters. The ability of resprouters to avoid mortality and withstand drought, coupled with their ability to recover rapidly, suggests that the impact of increased drought stress in ecosystems dominated by these species may be small. The strategy of resprouting needs to be modelled explicitly to improve estimates of future climate-change impacts on the carbon cycle, but this will require several important knowledge gaps to be filled before resprouting can be properly implemented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants produce volatile organic compounds (VOCs) in response to herbivore attack, and these VOCs can be used by parasitoids of the herbivore as host location cues. We investigated the behavioural responses of the parasitoid Cotesia vestalis to VOCs from a plant–herbivore complex consisting of cabbage plants (Brassica oleracea) and the parasitoids host caterpillar, Plutella xylostella. A Y-tube olfactometer was used to compare the parasitoids' responses to VOCs produced as a result of different levels of attack by the caterpillar and equivalent levels of mechanical damage. Headspace VOC production by these plant treatments was examined using gas chromatography–mass spectrometry. Cotesia vestalis were able to exploit quantitative and qualitative differences in volatile emissions, from the plant–herbivore complex, produced as a result of different numbers of herbivores feeding. Cotesia vestalis showed a preference for plants with more herbivores and herbivore damage, but did not distinguish between different levels of mechanical damage. Volatile profiles of plants with different levels of herbivores/herbivore damage could also be separated by canonical discriminant analyses. Analyses revealed a number of compounds whose emission increased significantly with herbivore load, and these VOCs may be particularly good indicators of herbivore number, as the parasitoid processes cues from its external environment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sahelian summer rainfall, controlled by the West African monsoon, exhibited large-amplitude multidecadal variability during the twentieth century. Particularly important was the severe drought of the 1970s and 1980s, which had widespread impacts1–6. Research into the causes of this drought has identified anthropogenic aerosol forcing3,4,7 and changes in sea surface temperatures (SSTs; refs 1,2,6,8–11) as the most important drivers. Since the 1980s, there has been some recovery of Sahel rainfall amounts2–6,11–14, although not to the pre-drought levels of the 1940s and 1950s. Here we report on experiments with the atmospheric component of a state-of-the-art global climate model to identify the causes of this recovery. Our results suggest that the direct influence of higher levels of greenhouse gases in the atmosphere was the main cause, with an additional role for changes in anthropogenic aerosol precursor emissions. We find that recent changes in SSTs, although substantial, did not have a significant impact on the recovery. The simulated response to anthropogenic greenhouse-gas and aerosol forcing is consistent with a multivariate fingerprint of the observed recovery, raising confidence in our findings. Although robust predictions are not yet possible, our results suggest that the recent recovery in Sahel rainfall amounts is most likely to be sustained or amplified in the near term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cistus is a plant genus traditionally used in folk medicine as remedy for several microbial disorders and infections. The abundance of Cistus spp. in the Iberian Peninsula together with their ability to renew after wildfire contribute to their profitability as suppliers of functional ingredients. The aim of this study was to provide a comprehensive characterization of the volatile profile of different Cistus plants grown in Spain:Cistus ladanifer L., Cistus albidus L., Cistus salviifolius L., and Cistus clusii Dunal (the latter has not been studied before). A system combining headspace solid-phase microextraction and gas chromatography coupled to mass spectrometry (HS-SPME-GC–MS) was implemented; thereby, the volatile compounds were extracted and analyzed in a fast, reliable and environment-friendly way. A total of 111 volatile compounds were identified, 28 of which were reported in Cistus for the first time. The most abundant components of the samples (mono and sesquiterpenes) have been previously reported as potent antimicrobial agents. Therefore, this work reveals the potential use of the Cistus spp. studied as natural sources of antimicrobial compounds for industrial production of cosmeceuticals, among other applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peak residential electricity demand takes place when people conduct simultaneous activities at specific times of the day. Social practices generate patterns of demand and can help understand why, where, with whom and when energy services are used at peak time. The aim of this work is to make use of recent UK time use and locational data to better understand: (i) how a set of component indices on synchronisation, variation, sharing and mobility indicate flexibility to shift demand; and (ii) the links between people’s activities and peaks in greenhouse gases’ intensities. The analysis is based on a recent UK time use dataset, providing 1 minute interval data from GPS devices and 10 minute data from diaries and questionnaires for 175 data days comprising 153 respondents. Findings show how greenhouse gases’ intensities and flexibility to shift activities vary throughout the day. Morning peaks are characterised by high levels of synchronisation, shared activities and occupancy, with low variation of activities. Evening peaks feature low synchronisation, and high spatial mobility variation of activities. From a network operator perspective, the results indicate that periods with lower flexibility may be prone to more significant local network loads due to the synchronization of electricity-demanding activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Plants form the base of the terrestrial food chain and provide medicines, fuel, fibre and industrial materials to humans. Vascular land plants rely on their roots to acquire the water and mineral elements necessary for their survival in nature or their yield and nutritional quality in agriculture. Major biogeochemical fluxes of all elements occur through plant roots, and the roots of agricultural crops have a significant role to play in soil sustainability, carbon sequestration, reducing emissions of greenhouse gasses, and in preventing the eutrophication of water bodies associated with the application of mineral fertilisers. ● Scope This article provides the context for a Special Issue of Annals of Botany on ‘Matching Roots to Their Environment’. It first examines how land plants and their roots evolved, describes how the ecology of roots and their rhizospheres contributes to the acquisition of soil resources, and discusses the influence of plant roots on biogeochemical cycles. It then describes the role of roots in overcoming the constraints to crop production imposed by hostile or infertile soils, illustrates root phenotypes that improve the acquisition of mineral elements and water, and discusses high-throughput methods to screen for these traits in the laboratory, glasshouse and field. Finally, it considers whether knowledge of adaptations improving the acquisition of resources in natural environments can be used to develop root systems for sustainable agriculture in the future.