160 resultados para Girometti, Giuseppe.
Resumo:
Background: In many experimental pipelines, clustering of multidimensional biological datasets is used to detect hidden structures in unlabelled input data. Taverna is a popular workflow management system that is used to design and execute scientific workflows and aid in silico experimentation. The availability of fast unsupervised methods for clustering and visualization in the Taverna platform is important to support a data-driven scientific discovery in complex and explorative bioinformatics applications. Results: This work presents a Taverna plugin, the Biological Data Interactive Clustering Explorer (BioDICE), that performs clustering of high-dimensional biological data and provides a nonlinear, topology preserving projection for the visualization of the input data and their similarities. The core algorithm in the BioDICE plugin is Fast Learning Self Organizing Map (FLSOM), which is an improved variant of the Self Organizing Map (SOM) algorithm. The plugin generates an interactive 2D map that allows the visual exploration of multidimensional data and the identification of groups of similar objects. The effectiveness of the plugin is demonstrated on a case study related to chemical compounds. Conclusions: The number and variety of available tools and its extensibility have made Taverna a popular choice for the development of scientific data workflows. This work presents a novel plugin, BioDICE, which adds a data-driven knowledge discovery component to Taverna. BioDICE provides an effective and powerful clustering tool, which can be adopted for the explorative analysis of biological datasets.
Resumo:
Guest Editorial
Resumo:
Human brain imaging techniques, such as Magnetic Resonance Imaging (MRI) or Diffusion Tensor Imaging (DTI), have been established as scientific and diagnostic tools and their adoption is growing in popularity. Statistical methods, machine learning and data mining algorithms have successfully been adopted to extract predictive and descriptive models from neuroimage data. However, the knowledge discovery process typically requires also the adoption of pre-processing, post-processing and visualisation techniques in complex data workflows. Currently, a main problem for the integrated preprocessing and mining of MRI data is the lack of comprehensive platforms able to avoid the manual invocation of preprocessing and mining tools, that yields to an error-prone and inefficient process. In this work we present K-Surfer, a novel plug-in of the Konstanz Information Miner (KNIME) workbench, that automatizes the preprocessing of brain images and leverages the mining capabilities of KNIME in an integrated way. K-Surfer supports the importing, filtering, merging and pre-processing of neuroimage data from FreeSurfer, a tool for human brain MRI feature extraction and interpretation. K-Surfer automatizes the steps for importing FreeSurfer data, reducing time costs, eliminating human errors and enabling the design of complex analytics workflow for neuroimage data by leveraging the rich functionalities available in the KNIME workbench.
Resumo:
Understanding farmer behaviour is needed for local agricultural systems to produce food sustainably while facing multiple pressures. We synthesize existing literature to identify three fundamental questions that correspond to three distinct areas of knowledge necessary to understand farmer behaviour: 1) decision-making model; 2) cross-scale and cross-level pressures; and 3) temporal dynamics. We use this framework to compare five interdisciplinary case studies of agricultural systems in distinct geographical contexts across the globe. We find that these three areas of knowledge are important to understanding farmer behaviour, and can be used to guide the interdisciplinary design and interpretation of studies in the future. Most importantly, we find that these three areas need to be addressed simultaneously in order to understand farmer behaviour. We also identify three methodological challenges hindering this understanding: the suitability of theoretical frameworks, the trade-offs among methods and the limited timeframe of typical research projects. We propose that a triangulation research strategy that makes use of mixed methods, or collaborations between researchers across mixed disciplines, can be used to successfully address all three areas simultaneously and show how this has been achieved in the case studies. The framework facilitates interdisciplinary research on farmer behaviour by opening up spaces of structured dialogue on assumptions, research questions and methods employed in investigation.
Resumo:
The detection of anthropogenic climate change can be improved by recognising the seasonality in the climate change response. This is demonstrated for the North Atlantic jet (zonal wind at 850 hPa, U850) and European precipitation responses projected by the CMIP5 climate models. The U850 future response is characterised by a marked seasonality: an eastward extension of the North Atlantic jet into Europe in November-April, and a poleward shift in May-October. Under the RCP8.5 scenario, the multi-model mean response in U850 in these two extended seasonal means emerges by 2035-2040 for the lower--latitude features and by 2050-2070 for the higher--latitude features, relative to the 1960-1990 climate. This is 5-15 years earlier than when evaluated in the traditional meteorological seasons (December--February, June--August), and it results from an increase in the signal to noise ratio associated with the spatial coherence of the response within the extended seasons. The annual mean response lacks important information on the seasonality of the response without improving the signal to noise ratio. The same two extended seasons are demonstrated to capture the seasonality of the European precipitation response to climate change and to anticipate its emergence by 10-20 years. Furthermore, some of the regional responses, such as the Mediterranean precipitation decline and the U850 response in North Africa in the extended winter, are projected to emerge by 2020-2025, according to the models with a strong response. Therefore, observations might soon be useful to test aspects of the atmospheric circulation response predicted by some of the CMIP5 models.
Resumo:
We propose a bargaining process supergame over the strategies to play in a non-cooperative game. The agreement reached by players at the end of the bargaining process is the strategy profile that they will play in the original non-cooperative game. We analyze the subgame perfect equilibria of this supergame, and its implications on the original game. We discuss existence, uniqueness, and efficiency of the agreement reachable through this bargaining process. We illustrate the consequences of applying such a process to several common two-player non-cooperative games: the Prisoner’s Dilemma, the Hawk-Dove Game, the Trust Game, and the Ultimatum Game. In each of them, the proposed bargaining process gives rise to Pareto-efficient agreements that are typically different from the Nash equilibrium of the original games.
Resumo:
Climate models indicate a future wintertime precipitation reduction in the Mediterranean region but there is large uncertainty in the amplitude of the projected change. We analyse CMIP5 climate model output to quantify the role of atmospheric circulation in the Mediterranean precipitation change. It is found that a simple circulation index, i.e. the 850 hPa zonal wind (U850) in North Africa, well describes the year to year fluctuations in the area-averaged Mediterranean precipitation, with positive (i.e. westerly) U850 anomalies in North Africa being associated with positive precipitation anomalies. Under climate change, U850 in North Africa and the Mediterranean precipitation are both projected to decrease consistently with the relationship found in the inter-annual variability. This enables us to estimate that about 85% of the CMIP5 mean precipitation response and 80% of the variance in the inter-model spread are related to changes in the atmospheric circulation. In contrast, there is no significant correlation between the mean precipitation response and the global-mean surface warming across the models. It follows that the uncertainty in cold-season Mediterranean precipitation projection will not be narrowed unless the uncertainty in the atmospheric circulation response is reduced.
Resumo:
Offsite pesticide losses in tropical mountainous regions have been little studied. One example is measuring pesticide drift soil deposition, which can support pesticide risk assessment for surface water, soil, bystanders, off target plants and fauna. This is considered a serious gap, given the evidence of pesticide-related poisoning in those regions. Empirical data of drift deposition of a pesticide surrogate, Uranine tracer, within one of the highest potato producing regions in Colombia, characterized by small plots and mountain orography, is presented. High drift values encountered in our study reflect the actual spray conditions using handled knapsack sprayers. Comparison between measured and predicted drift values using three existing empirical equations showed important underestimation. However, after their optimization based on measured drift information, the equations showed a strong predictive power for this study area and the study conditions. The most suitable curve to assess mean relative drift was the IMAG calculator after optimization.
Resumo:
Little research so far has been devoted to understanding the diffusion of grassroots innovation for sustainability across space. This paper explores and compares the spatial diffusion of two networks of grassroots innovations, the Transition Towns Network (TTN) and Gruppi di Acquisto Solidale (Solidarity Purchasing Groups – GAS), in Great Britain and Italy. Spatio-temporal diffusion data were mined from available datasets, and patterns of diffusion were uncovered through an exploratory data analysis. The analysis shows that GAS and TTN diffusion in Italy and Great Britain is spatially structured, and that the spatial structure has changed over time. TTN has diffused differently in Great Britain and Italy, while GAS and TTN have diffused similarly in central Italy. The uneven diffusion of these grassroots networks on the one hand challenges current narratives on the momentum of grassroots innovations, but on the other highlights important issues in the geography of grassroots innovations for sustainability, such as cross-movement transfers and collaborations, institutional thickness, and interplay of different proximities in grassroots innovation diffusion.
Resumo:
How is the notion of public interest operationalised in the regulatory practices of the International Public Sector Accounting Standards Board (IPSASB)? A fundamental objective in setting international accounting standards for both the private and public sector is to serve the ‘public interest’. Who or what constitutes ‘public interest’ however remains a highly complex and controversial issue. Private sector financial reporting research posits that users (of financial information) are used as a proxy for the ‘public’ and users are further refined to current and potential investors - a small proportion of the public. The debates surrounding public interest are even more contentious in public sector financial reporting which deals with ‘public’ (tax payers’) money. In our study we use Bourdieu’s notion of semi-homogenous fields to show how autonomous and heteronomous pressures from the epistemic community of the accounting profession and political/government interests compete for the right to define the public interest and determine how (by what accounting solutions) this interest is best served. This is a theoretical study grounded in the analysis of empirical data from interviews with the board members of the IPSASB. The main contribution of the paper is to further our understanding of the perceptions of the main decision makers from the ‘inner regulatory circle’ with regards to the problematic construct of public interest. The main findings suggest a paternal and un-reflexive attitude of the board members leading to the conclusion that the public have no real voice in these matters.
Resumo:
Little information exists on the effects of ensiling on condensed tannins or proanthocyanidins. The acetone–butanol–HCl assay is suitable for measuring proanthocyanidin contents in a wide range of samples, silages included, but provides limited information on proanthocyanidin composition, which is of interest for deciphering the relationships between tannins and their bioactivities in terms of animal nutrition or health. Degradation with benzyl mercaptan (thiolysis) provides information on proanthocyanidin composition, but proanthocyanidins in several sainfoin silages have proved resistant to thiolysis. We now report that a pretreatment step with sodium hydroxide prior to thiolysis was needed to enable their analysis. This alkaline treatment increased their extractability from ensiled sainfoin and facilitated especially the release of larger proanthocyanidins. Ensiling reduced assayable proanthocyanidins by 29%, but the composition of the remaining proanthocyanidins in silage resembled that of the fresh plants.
Resumo:
The General Election for the 56th United Kingdom Parliament was held on 7 May 2015. Tweets related to UK politics, not only those with the specific hashtag ”#GE2015”, have been collected in the period between March 1 and May 31, 2015. The resulting dataset contains over 28 million tweets for a total of 118 GB in uncompressed format or 15 GB in compressed format. This study describes the method that was used to collect the tweets and presents some analysis, including a political sentiment index, and outlines interesting research directions on Big Social Data based on Twitter microblogging.