168 resultados para Current Pulse


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in landscape composition and structure may impact the conservation and management of protected areas. Species that depend on specific habitats are at risk of extinction when these habitats are degraded or lost. Designing robust methods to evaluate landscape composition will assist decision- and policy-making in emerging landscapes. This paper describes a rapid assessment methodology aimed at evaluating landcover quality for birds, plants, butterflies and bees around seven UK Natura 2000 sites. An expert panel assigned quality values to standard Coordination of Information on the Environment (CORINE) landcover classes for each taxonomic group. Quality was assessed based on historical (1950, 1990), current (2000) and future (2030) land-cover data, the last projected using three alternative scenarios: a growth applied strategy (GRAS), a business-as-might-beusual (BAMBU) scenario, and sustainable European development goal (SEDG) scenario. A quantitative quality index weighted the area of each land-cover parcel with a taxa-specific quality measure. Land parcels with high quality for all taxonomic groups were evaluated for temporal changes in area, size and adjacency. For all sites and taxonomic groups, the rate of deterioration of land-cover quality was greater between 1950 and 1990 than current rates or as modelled using the alternative future scenarios (2000– 2030). Model predictions indicated land-cover quality stabilized over time under the GRAS scenario, and was close to stable for the BAMBU scenario. The SEDG scenario suggested an ongoing loss of quality, though this was lower than the historical rate of c. 1% loss per decade. None of the future scenarios showed accelerated fragmentation, but rather increases in the area, adjacency and diversity of high quality land parcels in the landscape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented in this article was performed at the Oriental Institute at the University of Chicago, on objects from their permanent collection: an ancient Egyptian bird mummy and three ancient Sumerian corroded copper-alloy objects. We used a portable, fiber-coupled terahertz time-domain spectroscopic imaging system, which allowed us to measure specimens in both transmission and reflection geometry, and present time- and frequency-based image modes. The results confirm earlier evidence that terahertz imaging can provide complementary information to that obtainable from x-ray CT scans of mummies, giving better visualisation of low density regions. In addition, we demonstrate that terahertz imaging can distinguish mineralized layers in metal artifacts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concern that European forest biodiversity is depleted and declining has provoked widespread efforts to improve management practices. To gauge the success of these actions, appropriate monitoring of forest ecosystems is paramount. Multi-species indicators are frequently used to assess the state of biodiversity and its response to implemented management, but generally applicable and objective methodologies for species' selection are lacking. Here we use a niche-based approach, underpinned by coarse quantification of species' resource use, to objectively select species for inclusion in a pan-European forest bird indicator. We identify both the minimum number of species required to deliver full resource coverage and the most sensitive species' combination, and explore the trade-off between two key characteristics, sensitivity and redundancy, associated with indicators comprising different numbers of species. We compare our indicator to an existing forest bird indicator selected on the basis of expert opinion and show it is more representative of the wider community. We also present alternative indicators for regional and forest type specific monitoring and show that species' choice can have a significant impact on the indicator and consequent projections about the state of the biodiversity it represents. Furthermore, by comparing indicator sets drawn from currently monitored species and the full forest bird community, we identify gaps in the coverage of the current monitoring scheme. We believe that adopting this niche-based framework for species' selection supports the objective development of multi-species indicators and that it has good potential to be extended to a range of habitats and taxa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fair weather atmospheric electrical current (Jz) couples the ionosphere to the lower atmosphere and thus provides a route by which changes in solar activity can modify processes in the lower troposphere. This paper examines the temporal variations and spectral characteristics of continuous measurements of Jz conducted at the Wise Observatory in Mitzpe-Ramon, Israel (30°35′ N, 34°45′ E), during two large CMEs, and during periods of increased solar wind density. Evidence is presented for the effects of geomagnetic storms and sub-storms on low latitude Jz during two coronal mass ejections (CMEs), on 24–25th October 2011 and 7–8th March 2012, when the variability in Jz increased by an order of magnitude compared to normal fair weather conditions. The dynamic spectrum of the increased Jz fluctuations exhibit peaks in the Pc5 frequency range. Similar low frequency characteristics occur during periods of enhanced solar wind proton density. During the October 2011 event, the periods of increased fluctuations in Jz lasted for 7 h and coincided with fluctuations of the inter-planetary magnetic field (IMF) detected by the ACE satellite. We suggest downward mapping of ionospheric electric fields as a possible mechanism for the increased fluctuations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current study discusses new opportunities for secure ground to satellite communications using shaped femtosecond pulses that induce spatial hole burning in the atmosphere for efficient communications with data encoded within super-continua generated by femtosecond pulses. Refractive index variation across the different layers in the atmosphere may be modelled using assumptions that the upper strata of the atmosphere and troposphere behaving as layered composite amorphous dielectric networks composed of resistors and capacitors with different time constants across each layer. Input-output expressions of the dynamics of the networks in the frequency domain provide the transmission characteristics of the propagation medium. Femtosecond pulse shaping may be used to optimize the pulse phase-front and spectral composition across the different layers in the atmosphere. A generic procedure based on evolutionary algorithms to perform the pulse shaping is proposed. In contrast to alternative procedures that would require ab initio modelling and calculations of the propagation constant for the pulse through the atmosphere, the proposed approach is adaptive, compensating for refractive index variations along the column of air between the transmitter and receiver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel approach to the automatic classification of very large data sets composed of terahertz pulse transient signals, highlighting their potential use in biochemical, biomedical, pharmaceutical and security applications. Two different types of THz spectra are considered in the classification process. Firstly a binary classification study of poly-A and poly-C ribonucleic acid samples is performed. This is then contrasted with a difficult multi-class classification problem of spectra from six different powder samples that although have fairly indistinguishable features in the optical spectrum, they also possess a few discernable spectral features in the terahertz part of the spectrum. Classification is performed using a complex-valued extreme learning machine algorithm that takes into account features in both the amplitude as well as the phase of the recorded spectra. Classification speed and accuracy are contrasted with that achieved using a support vector machine classifier. The study systematically compares the classifier performance achieved after adopting different Gaussian kernels when separating amplitude and phase signatures. The two signatures are presented as feature vectors for both training and testing purposes. The study confirms the utility of complex-valued extreme learning machine algorithms for classification of the very large data sets generated with current terahertz imaging spectrometers. The classifier can take into consideration heterogeneous layers within an object as would be required within a tomographic setting and is sufficiently robust to detect patterns hidden inside noisy terahertz data sets. The proposed study opens up the opportunity for the establishment of complex-valued extreme learning machine algorithms as new chemometric tools that will assist the wider proliferation of terahertz sensing technology for chemical sensing, quality control, security screening and clinic diagnosis. Furthermore, the proposed algorithm should also be very useful in other applications requiring the classification of very large datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The passage of an electric current through graphite or few-layer graphene can result in a striking structural transformation, but there is disagreement about the precise nature of this process. Some workers have interpreted the phenomenon in terms of the sublimation and edge reconstruction of essentially flat graphitic structures. An alternative explanation is that the transformation actually involves a change from a flat to a three-dimensional structure. Here we describe detailed studies of carbon produced by the passage of a current through graphite which provide strong evidence that the transformed carbon is indeed three-dimensional. The evidence comes primarily from images obtained in the scanning transmission electron microscope using the technique of high-angle annular dark-field imaging, and from a detailed analysis of electron energy loss spectra. We discuss the possible mechanism of the transformation, and consider potential applications of “three-dimensional bilayer graphene”.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superposed epoch studies have been carried out in order to determine the ionospheric response at mid-latitudes to southward turnings of the interplanetary magnetic field (IMF). This is compared with the geomagnetic response, as seen in the indices K p, AE and Dst. The solar wind, IMF and geomagnetic data used were hourly averages from the years 1967–1989 and thus cover a full 22-year cycle in the solar magnetic field. These data were divided into subsets, determined by the magnitudes of the southward turnings and the concomitant increase in solar wind pressure. The superposed epoch studies were carried out using the time of the southward turning as time zero. The response of the mid-latitude ionosphere is studied by looking at the F-layer critical frequencies, f o F2, from hourly soundings by the Slough ionosonde and their deviation from the monthly median values, δf o F2. For the southward turnings with a change in B z of δB z > 11.5 nT accompanied by a solar wind dynamic pressure P exceeding 5 nPa, the F region critical frequency, f o F2, shows a marked decrease, reaching a minimum value about 20 h after the southward turning. This recovers to pre-event values over the subsequent 24 h, on average. The Dst index shows the classic storm-time decrease to about −60 nT. Four days later, the index has still to fully recover and is at about −25 nT. Both the K p and AE indices show rises before the southward turnings, when the IMF is strongly northward but the solar wind dynamic pressure is enhanced. The average AE index does register a clear isolated pulse (averaging 650 nT for 2 h, compared with a background peak level of near 450 nT at these times) showing enhanced energy deposition at high latitudes in substorms but, like K p, remains somewhat enhanced for several days, even after the average IMF has returned to zero after 1 day. This AE background decays away over several days as the Dst index recovers, indicating that there is some contamination of the currents observed at the AE stations by the continuing enhanced equatorial ring current. For data averaged over all seasons, the critical frequencies are depressed at Slough by 1.3 MHz, which is close to the lower decile of the overall distribution of δf o Fl values. Taking 30-day periods around summer and winter solstice, the largest depression is 1.6 and 1.2 MHz, respectively. This seasonal dependence is confirmed by a similar study for a Southern Hemisphere station, Argentine Island, giving peak depressions of 1.8 MHz and 0.5 MHz for summer and winter. For the subset of turnings where δB z > 11.5 nT and P ≤ 5 nPa, the response of the geomagnetic indices is similar but smaller, while the change in δf o F2 has all but disappeared. This confirms that the energy deposited at high latitudes, which leads to the geomagnetic and ionospheric disturbances following a southward turning of the IMF, increases with the energy density (dynamic pressure) of the solar wind flow. The magnitude of all responses are shown to depend on δB z . At Slough, the peak depression always occurs when Slough rotates into the noon sector. The largest ionospheric response is for southward turnings seen between 15–21 UT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss substorm observations made near 2100 magnetic local time (MLT) on March 7, 1991, in a collaborative study involving data from the European Incoherent Scatter radar, all-sky camera data, and magnetometer data from the Tromsø Auroral Observatory, the U.K. Sub-Auroral Magnetometer Network (SAMNET) and the IMAGE magnetometer chain. We conclude that for the substorm studied a plasmoid was not pinched off until at least 10 min after onset at the local time of the observations (2100 MLT) and that the main substorm electrojet expanded westward over this local time 14 min after onset. In the late growth phase/early expansion phase, we observed southward drifting arcs probably moving faster than the background plasma. Similar southward moving arcs in the recovery phase moved at a speed which does not appear to be significantly different from the measured plasma flow speed. We discuss these data in terms of the “Kiruna conjecture” and classical “near-Earth neutral line” paradigms, since the data show features of both models of substorm development. We suggest that longitudinal variation in behavior may reconcile the differences between the two models in the case of this substorm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionospheric plasma flow measurements and simultaneous observations of thin (∼0.2° invariant latitude (ILAT)), multiple, longitudinally extended auroral arcs of transient nature within 74°-76° ILAT and 1030-1130 UT (∼14-15 MLT) on January 12, 1989, are reported. The auroral structures appeared within the luminous belt of strong 630.0-nm emissions located predominantly on sunward convecting field lines equatorward of the convection reversal boundary as identified by the European Incoherent Scatter UHF radar. The events occurred during a period of several hours quasi-steady solar wind speed (∼ 700 km s−1) and a radially orientated interplanetary magnetic field (IMF) with a weak northward tilt (IMF Bz>0). These typical dayside auroral features are related to previous studies of auroral activity related to the upward region 1 current in the postnoon sector. The discrete auroral events presented here may result from magnetosheath plasma injections into the low-latitude boundary layer (LLBL) and an associated dynamo mechanism. An alternative explanation invokes kinetic Alfvén waves, triggered either by Kelvin-Helmholtz instability at the inner (or outer) edge of the LLBL or by pressure pulse induced magnetopause surface waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generation of flow and current vortices in the dayside auroral ionosphere has been predicted for two processes ocurring at the dayside magnetopause. The first of these mechanisms is time-dependent magnetic reconnection, in “flux transfer events” (FTEs); the second is the action of solar wind dynamic pressure changes. The ionospheric flow signature of an FTE should be a twin vortex, with the mean flow velocity in the central region of the pattern equal to the velocity of the pattern as a whole. On the other hand, a pulse of enhanced or reduced dynamic pressure is also expected to produce a twin vortex, but with the central plasma flow being generally different in speed from, and almost orthogonal to, the motion of the whole pattern. In this paper, we make use of this distinction to discuss recent observations of vortical flow patterns in the dayside auroral ionosphere in terms of one or other of the proposed mechanisms. We conclude that some of the observations reported are consistent only with the predicted signature of FTEs. We then evaluate the dimensions of the open flux tubes required to explain some recent simultaneous radar and auroral observations and infer that they are typically 300 km in north–south extent but up to 2000 km in longitudinal extent (i.e., roughly 5 hours of MLT). Hence these observations suggest that recent theories of FTEs which invoke time-varying reconnection at an elongated neutral line may be correct. We also present some simultaneous observations of the interplanetary magnetic field (IMF) and solar wind dynamic pressure (observed using the IMP8 satellite) and the ionospheric flow (observed using the EISCAT radar) which are also only consistent with the FTE model. We estimate that for continuously southward IMF ( ≈ 5 nT) these FTEs contribute about 30 kV to the mean total transpolar voltage (∼30%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synaptic vesicle glycoprotein (SV)2A is a transmembrane protein found in secretory vesicles and is critical for Ca2+-dependent exocytosis in central neurons, although its mechanism of action remains uncertain. Previous studies have proposed, variously, a role of SV2 in the maintenance and formation of the readily releasable pool (RRP) or in the regulation of Ca2+ responsiveness of primed vesicles. Such previous studies have typically used genetic approaches to ablate SV2 levels; here, we used a strategy involving small interference RNA (siRNA) injection to knockdown solely presynaptic SV2A levels in rat superior cervical ganglion (SCG) neuron synapses. Moreover, we investigated the effects of SV2A knockdown on voltage-dependent Ca2+ channel (VDCC) function in SCG neurons. Thus, we extended the studies of SV2A mechanisms by investigating the effects on vesicular transmitter release and VDCC function in peripheral sympathetic neurons. We first demonstrated an siRNA-mediated SV2A knockdown. We showed that this SV2A knockdown markedly affected presynaptic function, causing an attenuated RRP size, increased paired-pulse depression and delayed RRP recovery after stimulus-dependent depletion. We further demonstrated that the SV2A–siRNA-mediated effects on vesicular release were accompanied by a reduction in VDCC current density in isolated SCG neurons. Together, our data showed that SV2A is required for correct transmitter release at sympathetic neurons. Mechanistically, we demonstrated that presynaptic SV2A: (i) acted to direct normal synaptic transmission by maintaining RRP size, (ii) had a facilitatory role in recovery from synaptic depression, and that (iii) SV2A deficits were associated with aberrant Ca2+ current density, which may contribute to the secretory phenotype in sympathetic peripheral neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In contrast to prior studies showing a positive lapse-rate feedback associated with the Arctic inversion, Boé et al. reported that strong present-day Arctic temperature inversions are associated with stronger negative longwave feedbacks and thus reduced Arctic amplification in the model ensemble from phase 3 of the Coupled Model Intercomparison Project (CMIP3). A permutation test reveals that the relation between longwave feedbacks and inversion strength is an artifact of statistical self-correlation and that shortwave feedbacks have a stronger correlation with intermodel spread. The present comment concludes that the conventional understanding of a positive lapse-rate feedback associated with the Arctic inversion is consistent with the CMIP3 model ensemble.